
Cryptographic Findings Report for RavenDB

Prepared for Hibernating Rhinos Ltd

January 12, 2018

www.edgesecurity.com

https://www.edgesecurity.com/


Abstract

Edge Security LLC was tasked by Hibernating Rhinos Ltd with examining
the use of cryptography—specifically the use of libsodium and of X.509
certificates—in RavenDB over the course of 5 days during December 2017.
The review of the RavenDB implementation produced several high risk findings.
Given that the software is still pre-release, the findings below are not rated,
and Edge Security LLC recommends that Hibernating Rhinos Ltd remediate
all findings prior to publication.

https://www.edgesecurity.com/
https://www.edgesecurity.com/


RavenDB Cryptographic Findings Report Edge Security LLC

Cryptographic Architecture

RavenDB deploys cryptography essentially on two different fronts: symmetric
cryptography of all data on disk, and asymmetric cryptography via X.509
certificates as a means of authentication between clients and servers. This
description follows the remediation of the findings in this report.

All symmetric encryption uses Daniel J. Bernstein’s XChaCha20Poly1305
algorithm, as implemented in libsodium, with a randomized 192-bit nonce.
While opting for XChaCha20 over ChaCha20 means more calls to the RNG
and a computation of HChaCha20, it also means that there is no possibility
of nonce-reuse, which means that it is considerably more resilient than ad-
hoc designs that might make a best-effort attempt to avoid nonce-reuse,
without ensuring it. Symmetric encryption covers the database main data
store, index definitions, journal, temporary file streams, and secret handling.
Such secret handling uses the Windows APIs for protected data, but only
for a randomly generated encryption key, which is then used as part of the
XChaCha20Poly1305 AEAD, to add a form of authentication. All long-term
symmetric secrets are derived from a master key using the Blake2b hash
function with a usage-specific context identifier.

At setup time, client and server certificates are generated. Clients trust
the server’s self-signed certificate, and the server trusts each client based on a
fingerprint of each client’s certificate. All data is exchanged over TLS, and TLS
version failures for certificate failures are handled gracefully, with a webpage
being shown indicating the failure status, rather than aborting the TLS
handshake. Server certificates are optionally signed by Let’s Encrypt using a
vendor-specific domain name. Certificates are generated using BouncyCastle
and are 4096-bit RSA.

Keys, nonces, and certificate private keys are randomly generated us-
ing the operating system’s CSPRNG, either through libsodium or through
BouncyCastle.

Finding 1: Nonce Reuse in IndexDefinitionBase

Retest Status: As of January 12, 2018, this finding has been remediated.

The Raven.Server/Documents/Indexes/IndexDefinitionBase.cs file
makes an assumption that nonces are 64 bytes (eight times the size of long),

Page 3



RavenDB Cryptographic Findings Report Edge Security LLC

when in reality nonces for the chacha20poly1305 algorithm are 64 bits:

private static unsafe void EncryptStream(StorageEnvironmentOptions
options, MemoryStream stream)↪→

{
var data = stream.ToArray();
var nonce = Sodium.GenerateRandomBuffer(sizeof(long) * 8);
var encryptedData = new byte[data.Length +

Sodium.crypto_aead_chacha20poly1305_ABYTES()];↪→

fixed (byte* pData = data)
fixed (byte* pEncryptedData = encryptedData)
fixed (byte* pNonce = nonce)
fixed (byte* pKey = options.MasterKey)
{

ulong cLen;
var rc = Sodium.crypto_aead_chacha20poly1305_encrypt(

pEncryptedData,
&cLen,
pData,
(ulong)data.Length,
null,
0,
null,
pNonce,
pKey

);

Unfortunately the encryption function will discard the remaining 448 bits
of the nonce, only using 64 bits. As a result, it is possible that the same
combination of nonce and key will be used more than once, resulting in
catastrophic key reuse.

The solution is to use the crypto_secretbox_xchacha20poly1305 or
crypto_secretbox function, which each take a 192-bit nonce, so that there is
no concern over misuse, provided the nonces are generated using randombytes_buf.

Finding 2: Inaccurate Key Size in Secret Protection

Retest Status: As of January 12, 2018, this finding has been remediated.

The Raven.Server/ServerWide/SecretProtection.cs file defines a mas-
ter key size as:

Page 4



RavenDB Cryptographic Findings Report Edge Security LLC

private const int KeySize = 512; // sector size

However, the two places it is used—passed to chacha20poly1305 and to
crypto_kdf—take 256-bit keys. Additionally, while these two functions do
take the same size key, it is usually best practice to give different keys to
different functions, so as to avoid domain collisions.

Finding 3: Nonce Reuse in Secret Protection

Retest Status: As of January 12, 2018, this finding has been remediated.

The Raven.Server/ServerWide/SecretProtection.cs file takes a vari-
able length array parameter, entropy, and uses it as a nonce for chacha20poly1305,
which assumes a fixed-size 64-bit nonce:

public byte[] Protect(byte[] secret, byte[] entropy)
{

// [...]
var protectedData = new byte[secret.Length +

Sodium.crypto_aead_chacha20poly1305_ABYTES()];↪→

var key = _serverMasterKey.Value;

if (entropy.Length < 8)
throw new InvalidOperationException($"The provided entropy is too

small. Should be at least 8 bytes but was {entropy.Length}
bytes");

↪→

↪→

fixed (byte* pSecret = secret)
fixed (byte* pProtectedData = protectedData)
fixed (byte* pEntropy = entropy)
fixed (byte* pKey = key)
{

ulong cLen;
var rc = Sodium.crypto_aead_chacha20poly1305_encrypt(

pProtectedData,
&cLen,
pSecret,
(ulong)secret.Length,
null,
0,
null,
pEntropy,

Page 5



RavenDB Cryptographic Findings Report Edge Security LLC

pKey
);

This code is called from various places, such as Raven.Server/ServerWide/
ServerStore.cs and tools/rvn/OfflineOperations.cs, which both have
code similar to:

var entropy = Sodium.GenerateRandomBuffer(256);
var protectedData = Secrets.Protect(hash, entropy);

Here they assume a 256-bit buffer as the entropy source, when this will
be truncated down to 64-bits, resulting in catastrophic key reuse.

The solution is to use the crypto_secretbox_xchacha20poly1305 or
crypto_secretbox function, which each take a 192-bit nonce, so that there is
no concern over misuse, provided the nonces are generated using randombytes_buf.

Finding 4: Non-Constant Time Secret Comparison

Retest Status: As of January 12, 2018, this finding has been remediated.

In Raven.Server/ServerWide/ServerStore.cs, secret values are com-
pared using a non-constant time comparison function:

fixed (byte* pExistingKey = existingKey)
{

bool areEqual = Sparrow.Memory.Compare(pKey, pExistingKey, key.Length)
== 0;↪→

Sodium.ZeroMemory(pExistingKey, key.Length);
if (areEqual)
{

Sodium.ZeroMemory(pKey, key.Length);
return;

}
}

An attacker observing the timing of such an operation and controlling one
of the inputs may be able to guess bytes of the secret value.

The solution is to use the sodium_memcmp function for all secret-value
memory comparisons.

Page 6



RavenDB Cryptographic Findings Report Edge Security LLC

Finding 5: Redundant or Missing Authentication in Server-
Store

Retest Status: As of January 12, 2018, this finding has been remediated.

In Raven.Server/ServerWide/ServerStore.cs, an additional generic
hash is computed and used for checking data integrity. In the case where this
is passed to the built-in chacha20poly1305 implementation, this additional
hash is redundant. In the case where it is passed to System.Security.
Cryptography.ProtectedData, it is insufficient as a secure authenticator—
this is construction with known vulnerabilities. The function reads as follows:

if (Sodium.crypto_generichash(pHash, (UIntPtr)hashLen, pKey,
(ulong)key.Length, null, UIntPtr.Zero) != 0)↪→

throw new InvalidOperationException("Failed to hash key");

Sparrow.Memory.Copy(pHash + hashLen, pKey, key.Length);

var entropy = Sodium.GenerateRandomBuffer(256);

var protectedData = Secrets.Protect(hash, entropy);

var ms = new MemoryStream();
ms.Write(entropy, 0, entropy.Length);
ms.Write(protectedData, 0, protectedData.Length);
ms.Position = 0;

Later, it is decrypted, and the computed hash is checked:

var data = Secrets.Unprotect(protectedData, entropy);
// [...]
if (Sodium.crypto_generichash(pHash, (UIntPtr)hashLen, pData + hashLen,

(ulong)(data.Length - hashLen), null, UIntPtr.Zero) != 0)↪→

throw new InvalidOperationException($"Unable to compute hash for
{name}");↪→

if (Sodium.sodium_memcmp(pData, pHash, (UIntPtr)hashLen) != 0)
throw new InvalidOperationException($"Unable to validate hash after

decryption for {name}, user store changed?");↪→

var buffer = new byte[data.Length - hashLen];
fixed (byte* pBuffer = buffer)

Page 7

System.Security.Cryptography.ProtectedData
System.Security.Cryptography.ProtectedData


RavenDB Cryptographic Findings Report Edge Security LLC

{
Sparrow.Memory.Copy(pBuffer, pData + hashLen, buffer.Length);

}

As seen here, the use of generichash is either redundant or insecure.
If chacha20poly1305 is in use, no generichash should be computed. If
ProtectedData is in use, the data should most likely be encrypted with
chacha20poly1305 first, and the native ProtectedData API can then be
used for storing a randomly generated secret key.

Finding 6: Missing Authentication When Encrypting

Retest Status: As of January 12, 2018, this finding has been remediated.

In Raven.Server/ServerWide/TempCryptoStream.cs, xchacha20 is used,
which lacks an authenticator:

private void EncryptToStream(byte* pInternalBuffer)
{

if (_bufferValidIndex == 0)
return;

fixed (byte* n = _nonce)
fixed (byte* k = _key)
{

_stream.Seek(_startPosition + _blockNumber * _internalBuffer.Length,
SeekOrigin.Begin);↪→

var rc = Sodium.crypto_stream_xchacha20_xor_ic(pInternalBuffer,
pInternalBuffer, (ulong)_bufferValidIndex, n,
(ulong)_blockNumber, k);

↪→

↪→

This means that an attacker can manipulate the data on disk. Since it
appears that this is for ephemeral data, and a random key is generated for
each usage, the right function to use is the chacha20poly1305 function with
the nonce set to zero (or the sequential index of each independently encrypted
block) and the key randomly generated each time.

Page 8



RavenDB Cryptographic Findings Report Edge Security LLC

Finding 7: Weak Hashing in CryptoPager and Journal

Retest Status: As of January 12, 2018, this finding has been remediated.

The Voron/Impl/Journal/WriteAheadJournal.cs and Voron/Impl/Paging/
CryptoPager.cs files make use of a non-cryptographically secure hash func-
tion called XXHash, even when authenticated encryption is in use. In
WriteAheadJournal.cs, this is mostly wasteful rather than harmful:

if (performCompression)
txHeader->Hash = Hashing.XXHash64.Calculate(txHeaderPtr +

sizeof(TransactionHeader), (ulong)compressedLen,
(ulong)txHeader->TransactionId);

↪→

↪→

else
txHeader->Hash = Hashing.XXHash64.Calculate(txPageInfoPtr,

(ulong)totalSizeWritten, (ulong)txHeader->TransactionId);↪→

if (_env.Options.EncryptionEnabled)
EncryptTransaction(txHeaderPtr);

In CryptoPager.cs, however, it may wind up being harmful, because the
data could have manipulable hash collisions:

foreach (var buffer in state.LoadedBuffers)
{

var checksum = Hashing.XXHash64.Calculate(buffer.Value.Pointer,
(ulong)buffer.Value.Size);↪→

if (checksum == buffer.Value.Checksum)
continue; // No modification

// Encrypt the local buffer, then copy the encrypted value to the
pager↪→

var pageHeader = (PageHeader*)buffer.Value.Pointer;
EncryptPage(pageHeader);

It is possible here that the new value fails to be encrypted if the weak
hash encounters a collision.

Finding 8: Nonce Reuse in CryptoPager and Journal

Retest Status: As of January 12, 2018, this finding has been remediated.

Page 9



RavenDB Cryptographic Findings Report Edge Security LLC

Both Voron/Impl/Journal/WriteAheadJournal.cs and Voron/Impl/Paging/
CryptoPager.cs have very similar blocks regarding key derivation and nonce
handling:

fixed (byte* ctx = Sodium.Context)
{

var num = txHeader->TransactionId;
if (Sodium.crypto_kdf_derive_from_key(subKey, (UIntPtr)32, (ulong)num,

ctx, mk) != 0)↪→

throw new InvalidOperationException("Unable to generate derived
key");↪→

}

var npub = fullTxBuffer + TransactionHeader.SizeOf - macLen -
sizeof(long);↪→

if (*(long*)npub == 0)
Sodium.randombytes_buf(npub, (UIntPtr)sizeof(long));

else
(*(long*)npub)++;

And:

if (Sodium.crypto_kdf_derive_from_key(subKey, (UIntPtr)32, (ulong)num,
ctx, mk) != 0)↪→

throw new InvalidOperationException("Unable to generate derived key");

var dataSize = (ulong)GetNumberOfPages(page) *
Constants.Storage.PageSize;↪→

var npub = (byte*)page + PageHeader.NonceOffset;
if (*(long*)npub == 0)

Sodium.randombytes_buf(npub, (UIntPtr)sizeof(long));
else

*(long*)npub = *(long*)npub + 1;

It appears that the intent of these blocks is to derive a subkey from a
master key, based on a transaction ID, and then have sequential nonces within
each ID. However, this code does not accomplish that. Choosing a random
nonce when zero and incrementing it results in non-uniform sized nonce
limits, and the possibility for nonce reuse. Further, it does not appear that
transaction IDs are globally unique. Even between the two bits of code above,
the same ID may be used for different data in different settings, resulting
in subkey reuse. Finally, it is not immediately clear when npub will not be

Page 10



RavenDB Cryptographic Findings Report Edge Security LLC

zeroed to start with, and when it is not zero, whether this corresponds to
relevant information about previous nonces.

Rather than try to reason about a flawed design, it may be wise to
rethink the design of these segments. It might be possible to derive sub-
keys and attempt to come up with a global ID for deriving the subkeys—
where global is relative to the entire lifetime of the master key. However,
it appears that this may not be possible given the overall architecture
of the database. Therefore, the same conclusion as before applies: use
the crypto_secretbox_xchacha20poly1305 or crypto_secretbox function,
which each take a 192-bit nonce, so that there is no concern over key/nonce
misuse, provided the nonces are generated using randombytes_buf.

If it is not possible to store the full 192 bits, given restraints of the on-disk
format, it may be permissible to use only 128 bits of random data, filling
in the remaining 64 bits with hopefully-unique data implied by the existing
state, such as the transaction ID.

Finding 9: Inconsistent Use of KDF and Master Key

Retest Status: As of January 12, 2018, this finding has been remediated.

RavenDB uses a master key, which is then used to encrypt various other
things. This master key is passed to several different constructions and con-
texts. Sometimes it is used directly. Sometimes it is used indirectly, through
the crypto_kdf variety of functions. It is best practice to have domain
separation of key use—using a unique key for each type of cryptographic
construction and data type.

For this it is recommended that the crypto_kdf_derive_from_key func-
tion be used. The ctx parameter should be an 8 character string defining the
type of usage. For example, “indexkey” or “pagerkey” would make good values
for ctx. For situations in which multiple different keys are desired within the
same ctx—such as if the number of keys is excessively large or variable—use
the 64-bit integer parameter subkey_id in an incrementing fashion.

Finding 10: Man in the Middle of Customer Domains

Retest Status: As of January 12, 2018, this finding has been documented.

Page 11



RavenDB Cryptographic Findings Report Edge Security LLC

RavenDB enables users to use a subdomain of dbs.local.ravendb.net
with Let’s Encrypt, by way of server-side assisted ACME dns-01 domain
ownership verification. While this is convenient for customers, it does mean
that Hibernating Rhinos Ltd has the ability to generate valid certificates, as
well, regardless of user intent, which could potentially be used for a man in
the middle attack. This means that all users of this feature rely on both the
operational security and good will of Hibernating Rhinos Ltd. Depending on
the security threat model, this may or may not be considered a vulnerability,
though the assessment team does recommend clearly indicating this situation
to the user in all cases.

Finding 11: Overly Broad Customer Domain Scope

Retest Status: As of January 12, 2018, this finding has been remediated.

Allowing customers to control subdomains of dbs.local.ravendb.net
is potentially dangerous, because the top-level domain, ravendb.net, is
also used for authenticated and potentially sensitive uses, such as api.
ravendb.net. For that reason, it is advised that a new top-level domain—
ravendbusercontent.net for example—be used instead. It is worth noting
that both Google and Github use similar domains—googleusercontent.com
and githubusercontent.com.

Finding 12: Non-high Strength RSA Keys

Retest Status: As of January 12, 2018, this finding has been remediated.

The Raven.Server/Utils/CertificateUtils.cs file makes use of 2048-
bit RSA keys:

const int keyStrength = 2048;

While 2048-bit RSA is not currently publicly-known to be broken, and may
very well not be for the foreseeable future, the NSA Suite B recommendations
recently raised the minimum size to 3072 bits for top secret information.
Though the reasons for doing so may be dubious and such government
standards are generally not the final word on these issues, it is still advised to

Page 12

dbs.local.ravendb.net
dbs.local.ravendb.net
ravendb.net
api.ravendb.net
api.ravendb.net
ravendbusercontent.net
googleusercontent.com
githubusercontent.com


RavenDB Cryptographic Findings Report Edge Security LLC

be at least as strong as the latest Suite B recommendations, by using either
3072-bit or 4096-bit RSA keys.

Finding 13: Collision in Certificate Serial Numbers

Retest Status: As of January 12, 2018, this finding has been remediated.

The Raven.Server/Utils/CertificateUtils.cs file generates serial num-
bers for new certificates with:

BigInteger serialNumber = BigIntegers.CreateRandomInRange(BigInteger.One,
BigInteger.ValueOf(Int64.MaxValue), random);↪→

certificateGenerator.SetSerialNumber(serialNumber);

This gives certificates a total number of 263 − 2 serial numbers, which is
not a large enough range. Instead, a random 20-bytes serial number should
be generated; 20 bytes is generally the maximum size of serial numbers that
will be readable by all X.509 implementations.

Finding 14: Dubious Random Number Generation for
RSA

Retest Status: As of January 12, 2018, this finding has been remediated.

The RSA key generation code in Raven.Server/Utils/CertificateUtils.
cs makes use of this function for initializing a random number generator:

public static SecureRandom GetSeededSecureRandom()
{

var buffer = new byte[32];
using (var cryptoRandom = RandomNumberGenerator.Create())
{

cryptoRandom.GetBytes(buffer);
}
var randomGenerator = new VmpcRandomGenerator();
randomGenerator.AddSeedMaterial(buffer);
SecureRandom random = new SecureRandom(randomGenerator);
return random;

}

Page 13



RavenDB Cryptographic Findings Report Edge Security LLC

Rather than using dubious generators, instead always use randomness
directly from the operating system, via System.Security.Cryptography.
RandomNumberGenerator.

Finding 15: Loose Certificate Extension Matching

Retest Status: As of January 12, 2018, this finding has been remediated.

The Raven.Server/ServerWide/SecretProtection.cs file verifies that
certificates have certain extensions:

supported = (extensionString.Contains("Client Authentication") &&
extensionString.Contains("Server Authentication"))↪→

|| (extensionString.Contains("1.3.6.1.5.5.7.3.2") &&
extensionString.Contains("1.3.6.1.5.5.7.3.1"));↪→

Similarly Raven.Client/Http/RequestExecutor.cs does the same:

foreach (var extension in certificate.Extensions)
{

if (extension.Oid.Value != "2.5.29.37") //Enhanced Key Usage extension
continue;

var extensionsString = new AsnEncodedData(extension.Oid,
extension.RawData).Format(false);↪→

supported = extensionsString.Contains("1.3.6.1.5.5.7.3.2") ||
extensionsString.Contains("Client Authentication"); // Client
Authentication

↪→

↪→

}

However, by using Contains, it is possible that these strings are a substring
of a different extension that is not the intended one. Rather than doing this,
it is advisable to actually parse the entire list of extensions and check for
explicit equality.

Page 14

System.Security.Cryptography.RandomNumberGenerator
System.Security.Cryptography.RandomNumberGenerator

	Nonce Reuse in IndexDefinitionBase
	Inaccurate Key Size in Secret Protection
	Nonce Reuse in Secret Protection
	Non-Constant Time Secret Comparison
	Redundant or Missing Authentication in ServerStore
	Missing Authentication When Encrypting
	Weak Hashing in CryptoPager and Journal
	Nonce Reuse in CryptoPager and Journal
	Inconsistent Use of KDF and Master Key
	Man in the Middle of Customer Domains
	Overly Broad Customer Domain Scope
	Non-high Strength RSA Keys
	Collision in Certificate Serial Numbers
	Dubious Random Number Generation for RSA
	Loose Certificate Extension Matching

