Production postmortem: The self signed certificate that couldn’t
RavenDB makes extensive use of certificates for authentication and encryption. They allow us to safely communicate between distributed instances without worrying about a man in the middle or eavesdroppers. Given the choices we had to implement authentication, I’m really happy with the results of choosing certificates as the foundation of our authentication infrastructure.
It would be too good, however, to expect to have no issues with certificates. The topic of this point is a puzzler. A user has chosen to use a self signed certificate for the nodes in the cluster, but was unable to authenticate between the servers unless they registered the certificate in the OS’ store.
That sounds reasonable, right? If this is a self signed certificate, we obviously don’t trust it, so we need this extra step to ensure that we do trust it. However, we designed RavenDB specifically to avoid this step. If you are using a self signed certificate, the server will trust its own certificate, and thus will trust anyone that is using the same certificate.
In this case, however, that wasn’t happening. For some reason, the code path that we use to ensure that we trust our own certificate was not being activated, and that was a puzzler indeed.
One of the things that RavenDB does on first startup is to try to connect to itself as a client. It checks whatever it is successful or not. If not, we’ll try again, ignoring the registered root CAs. If we are successful at that point, we know what the issue here and ensure that we ignore the untrusted signer on the certificate. We only enable this code path if by default we don’t trust our own certificate.
Looking at the logs, we could see that we got a failure when talking to ourselves, some sort of a device not ready issue. That was strange. We hooked strace to look into what was going on, but there was nothing that was wrong at the sys call level. Then we looked into what was going on and realized that the issue was that the server’s was configured to use: https://ravendb-1.francecentral.cloudapp.azure.com/ but was actually hosted on https://ravendb-1-tst.francecentral.cloudapp.azure.com/
Do you see the difference?
The server was try to contact itself using the configured hostname. It failed, because of a DNS issue, so it couldn’t contact itself to figure out that the certificate was invalid. At that point, it didn’t install the hook and wouldn’t trust the self signed certificate.
So the issue started with investigating why we nodes in the cluster don’t trust each other with self signed certificate and got resolved by a simple configuration error.
Woah, already finished? 🤯
If you found the article interesting, don’t miss a chance to try our database solution – totally for free!