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Couchbase vs RavenDB Performance 
at Rakuten Kobo

Rakuten Kobo Inc. is one of the world's biggest digi-

tal booksellers. Owned by Tokyo-based Rakuten and 

headquartered in Toronto, Rakuten Kobo enables 

millions of readers worldwide to read anytime, 

anywhere, on any device. Rakuten Kobo connects 

readers to stories using thoughtful and personal-

ized curation of eBooks and audiobooks, and the 

best dedicated devices and apps for reading. With 

the singular focus of making reading the finest 

experience, Kobo's open platform allows people to 

fit reading into their busy lives.

Users purchase books, store their highlights made on 

a book, and track their notes. To make that possible, 

the backend servers must synchronize data with the 

e-readers on a regular basis. 

With over tens of millions of devices, a normal day 

at Rakuten Kobo looks like a denial-of-service attack 

for most businesses. In determining the best storage 

solution for their next gen infrastructure the Kobo 

team, led by Trevor Hunter the CTO, wanted to see 

how RavenDB would stack against one of the data-

bases they already had in their infrastructure. 

Kobo has been using Couchbase for a while for a 

different purpose and wanted to see what would be 

the best tool for the job to hold the data for the new 

e-books backend. This report benchmarks RavenDB 

against Couchbase. 

Kobo worked with us to build a clean dataset that 

matched their data distribution using publicly avail-

able data to have a reproducible environment for 

evaluation. The dataset consists of 1.35 billion docu-

ments with a database size of 985GB. 

Under load, RavenDB matches or exceeds 
Couchbase performance at the 99.99 
percentile with third of the hardware 
resources. In the cloud this translates to 
80% cost savings.

2



Key Findings
•	 Comparable performance (up to 99.99-percen-

tile) when accessing data by key.

•	 RavenDB outperforms Couchbase by orders of 

magnitude when using queries under load.

•	 Couchbase proved fragile in production, with high 

overhead on failure conditions. RavenDB’s failure 

model, on the other hand, proved resilient and 

allowed much higher operational flexibility and 

peace of mind.

•	 RavenDB stores the data at ⅓ of the storage 

needed by Couchbase.

•	 RavenDB cloud budget configurations are 

80%  cheaper at a comparable, 99.99 percentile 

latency.

The Dataset
To let anyone study these results, our team used 

publicly available data. The final database export is 

available for anyone wanting to reproduce the find-

ings shown in this report. 

To match the typical usage scenario of the expected 

next gen infrastructure, we sized the deployment for 

a realistic expected usage scenario.

The dataset contains 1,357,692,380 (1.35 billion) 

documents divided into the following collections:

•	 69.38 million Users. The total number of users 

in the model. A user may have multiple devices 

and can sync the data across all of them. We 

used the Reddit users’ database available at: 

https://bit.ly/3j4yTCe

•	 6 3 , 5 1 0  B o o k s .  e B o o k s  t a k e n  f r o m 

Project Gutenberg. This includes both the book’s 

metadata as well as their content.

•	 734.22 million UsersBooks. Associating a book 

to a user, usually representing a user purchasing 

a particular book. This was generated randomly, 

using long tail distribution.

3

Couchbase vs RavenDB Performance at Rakuten Kobo

https://bit.ly/3j4yTCe
http://www.gutenberg.org/


•	 497.03 million Highlights. A core enhancement 

on the reading experience is supporting high-

lighting phrases and paragraphs in any book 

accessible by a user. The highlight data includes 

the position and length of the highlight as well as 

its actual text.

•	 28.78 million Editions, 20.3 million Works and 

7.89 million Authors. These documents represent 

additional information about the books in the 

dataset.

To mimic the Rakuten Kobo data distributions 

found in the private data, we used a typical long tail 

distribution from books to users. It is expected the 

number of books per user would be similar. Still, in 

some cases, Rakuten Kobo has users that represent 

libraries / collections that may accumulate a lot of 

books. The former typically will have a small amount, 

and while the latter are not a normal occurrence, they 

would be quite taxing when accessed. As an example, 

the whole Project Gutenberg collection would include 

more than 60,000 books.

Given the data distribution, the relationships created 

is roughly three-quarters of a billion (See Table 1). 

Regarding the number of highlights per user, the 

top 10,000 users have significantly more books than 

the top used in the Rakuten Kobo actual dataset. The 

primary objective of oversizing highlights is to test if 

the infrastructure can grow in functionality for both 

user and machine-generated content and therefore 

encounter queries with many potential results. 

For context, Goodreads has an annual reading chal-

lenge. The average pledge for reads in 2020 was 61 

books. That means that after a few years, a moder-

ately heavy reader will accumulate a few hundred 

books quite easily. 

In terms of highlights, Rakuten Kobo’s data has 

many users with no or just a few user-generated 

highlights. The overall average is about 10 highlights 

per user, with the 99-percentile coming in under 

250 highlights. However, some users are really heavy 

users of highlights, with some approaching 20,000 

highlights.

The total number of documents that we used was 1.35 

billion. The database export for this dataset is 108GB 

of compressed data. The export file is available at 

(https://bit.ly/3rhVNZ6 – note 108GB) in RavenDB 

dump format ready to be imported to a RavenDB 

database.

Number of users Number of highlights

1 203,550

428 100,000 – 200,000

10,622 10,000 – 100,000

20,340 1,000 – 10,000

67,249 100 – 1,000

59,827 10 – 100

10,158,123 2 – 10

43,425,405 1

Table 1. Testing data distribution
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Loading the Data
The number of documents in the dataset represent 

a reasonably sized dataset, both in terms of the 

actual size of the data and the number of documents. 

Loading the dataset represents a sizable amount of 

time.

For RavenDB it took less than a day. 
For Couchbase it took almost four days.

When loading the data into RavenDB, we used a 

machine with 8 cores and 32 GB of RAM with default 

configuration.  The actual tests were run on several 

different machines.

We attempted to load the same dataset into 

Couchbase as well, but we ran into a few problems. 

By default, Couchbase stores all the metadata about 

documents in memory. For the workload involved, 

this became highly problematic. The memory used by 

Couchbase per key is the document key length plus 

56 bytes. 

With 1.35 billion documents, some of the documents 

have long ids (around 60 bytes). Along with the 

metadata overhead, Couchbase required 162 GB of 

RAM just to store the document IDs while RavenDB 

managed just fine to work with entire dataset using 

32 GB.

Couchbase has an option that avoids holding the 

entire set of document keys in memory. It is called 

Full Ejection and allows Couchbase to reduce the 

amount of data that must be kept in memory. 

For best performance, Couchbase recommends avoid-

ing this setting. However, that requires you to signifi-

cantly increase the size and capacity of your nodes. 

In our experiments, to get good performance without 

Full Ejection, we had to massively overprovision the 

cluster, to the point where it made no economic sense 

whatsoever. Performance alone isn’t sufficient, part 

of the equation is the cost of resources needed to 

achieve this performance. 

Even with setting the Ejection Method to Full, 

Couchbase nodes consumed too much memory and 

crashed (See Fig. 1). Without sufficient computing 

and memory resources, we observed the nodes 

consuming all available memory and processes 

being killed by the Operating System. We increased 

the size of the deployment until nodes could ingest 

the whole dataset. The minimum hardware required 

to complete the goal was a cluster of 3 nodes with 32 

cores and 128 GB of RAM per node. 

Even with 128GB per node, we observed Couchbase 

consuming more memory than was available on the 

machine, taking the entire machine down in the 

process. Using too much memory and ending up 

spending a lot of time in page faults rendered the 

node completely inaccessible, attempting to restart 

Fig. 1  Unresponsive Couchbase node after memory failure
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the service or the machine was not always successful. 

This happened with no swap as well as with a 32GB 

swap in place.

We initially defined the default 90% of memory 

dedicated to Couchbase, but after repeated failures 

we reduced it to 80GB out of the 128GB during the 

ingest process. This reduced the outages to the point 

where we could complete the ingestion. During the 

ingestion process, we introduced breaks now and 

then for a few hours to let the cluster do its own 

book-keeping and management instead of putting it 

under constant load.

We also had to throttle down the ingest speed. 

The ingest process for RavenDB was performed on 

a single node with 8 cores, 32 GB RAM and default 

configuration while replicating to the rest of the 

nodes in the cluster. For Couchbase, we set up shard-

ing from the start. The minimum viable hardware 

configuration that could finish the task required 32 

cores and 128 GB RAM for each of the three nodes.

That is 12 times higher than the configuration 

used for RavenDB for the same ingest scenario. We 

consider this to be the bare minimum hardware to 

sustain this load on Couchbase. In fact, this is explic-

itly below what we could tolerate in production. There 

is just a single copy of each document in Couchbase, 

which means a single node going down will result 

in data loss or data unavailability. A more realistic 

scenario would be a five node cluster, with the data 

replicated to three other nodes. 

See the following section for more details on the 

issues we have encountered.

Disk Usage
A major difference between RavenDB and Couchbase 

was discovered during the ingest process. In 

RavenDB, the data was stored with full replication 

between the nodes. Every single node holds the full 

data set of 1.35 billion documents. The size of the data 

on disk was 985 GB, with another 120 GB for indexes. 

The system was provisioned with 2TB disks and it 

used just over half. 

Couchbase was more challenging for the following 

reasons:

1.	 The database was sharded and we used a repli-

cation factor of 1, so each document only existed 

on a single node. We assumed that sharding the 

data would need a lot less disk space, so initially 

we provisioned the Couchbase nodes with 1TB 

disks. Instances quickly ran out of disk space once 

we uploaded 30% of the data, therefore we had to 

double the disk allocation several times to reach 

the ingestion and initial indexing goal.

Each Couchbase node required 6 TB of 
available storage to finish loading all of 
the data successfully.

To hold the entire dataset, we would need to 

double that or triple that again, per node. If each 

node would hold the entire 1.35 billion records 

as well, the amount of memory (even with Full 

Ejection) that would be dedicated just to metadata 

storage would force us to give even more memory 

for each node.

2.	 Couchbase uses an append-only + compaction 

model to write to the disk. Each write is written 

to the end of the data file. This approach allows 

Couchbase to simply scan from the end of the file 
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on startup to find the most recent valid transac-

tion. Unfortunately, this approach comes at a cost. 

When documents are deleted or modified, they 

aren’t updated in place but written (again) to the 

end of the file, causing the disk usage to increase 

substantially under write load.

Older versions of the values in the file are not 

modified, but they are now no longer needed. A 

compaction step is required to free the disk space. 

Couchbase performs this operation by writing 

a new file, with only the valid data. This was a 

simplified explanation of a fairly complex piece of 

technology, for details on the actual behavior you 

can consult the Couchbase documentation.

RavenDB uses a technology known as Write Ahead 

Log and MVCC to guarantee full ACID protection. 

It will hold duplicate versions of modified data as 

long as there are active transactions that may need 

to access old data. Once those transactions are 

complete, the space that the old values used can 

be immediately repurposed. There is no need for 

VACUUM or ongoing maintenance. The amount of 

space used for metadata overhead is minimal with 

a good balance between performance and disk 

utilization.

During compaction, Couchbase may require 

significantly more disk space. In our scenario, 

we were writing each document once, with no 

updates or deletes. We still observed compactions 

multiple times during the ingestion process (See 

Fig. 2).

When compaction started, disk utilization was 

extremely high and the IO queue length grew 

very fast. During the ingest process, we observed 

that the compaction process could run for several 

hours. A late compaction process was observed 

taking over 12 hours of processing. 

With just 1TB disks, Couchbase filled the entire 

disk under those conditions, then crashed when it 

failed to write to the disk. We compensated that by 

using 2TB disks. Couchbase would then consume 

all the disk space on those as well.

A single secondary index used 450GB of disk 

space (See Fig. 3). Couchbase is maintaining index 

snapshots to be able to roll back in the case of a 

node failure. You can control the number of snap-

shots that are kept using the Max Rollback Points 

configuration option, but to keep the disk usage 

under control for the purpose of the tests a single 

snapshot was used.

The index snapshots as well as the index itself 

running compactions would easily consume the 

entire available disk space. The final index file 

was 1.2TB in size, but under compaction it could 

balloon to 2.5TB. We were required to increase 

the disk size of the nodes up to 6TB in order to 

successfully complete the ingest and indexing 

processes.

3.	 Disk usage behavior, for data / index compac-

tion as well as the snapshot feature shows that 

Couchbase requires a significantly higher number 

Fig. 2  Couchbase Compaction process

	 “data_size”: 82607640099, 

	 “disk_size”: 484163817472,

Fig. 3  Couchbase metrics showing the size of a secondary 
index and its disk space usage. The index size is 77GB but 

the size on disk is 450GB
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of IOPS than the observed for RavenDB during 

the execution of the same task. Both peak I/O and 

sustained IOPS were higher than for RavenDB. 

In the cloud, you pay for IOPS and you may be 

using burstable disks, resulting in higher financial 

costs.

The Test Environment
Rakuten Kobo’s scenario has millions of devices that 

will sync periodically to the cloud with new books or 

annotations for each user. In many cases, the load is 

generated by automated sync processes and not just 

by users’ actions.

Kobo has sold a lot of devices, so the work generated 

to the service can be expected to be a fairly constant 

load from a multitude of devices. Slow queries cause 

requests to pile up and devices may timeout. In that 

case, they’ll retry the sync operation at a later time, 

deferring the load.

Infrastructure must also deal with less frequent 

operations. Things like users getting a new device 

and syncing their entire history, or pulling an old 

device from a drawer and starting to read. 

The analysis team focused on the most common 

scenarios to benchmark:

•	 Highlights by user. Get the first page of all high-

lights for a user across all books and filter on a 

single property.

•	 Highlights for a book and a user. Get the first 

page of all highlights for a user in a specific book 

and filter them on multiple properties.

•	 Users by ID. When we know the document ID and 

can fetch it directly.

Tests for the first two queries were performed by 

selecting the first 100,000 users with the highest 

number of books and highlights in order to stress the 

storage solution. Then, we used a random sampling 

from that list to generate requests on behalf of those 

users causing the load to match a random-access 

pattern.  The duration of the test and the number of 

requests ensure that we’ll cover the entire 100,000 

users. 

Tests for the last query, Users by ID, were done on a 

list of all users, with each query requesting a differ-

ent user by ID. The reason to test this use case relies 

on the fact that it is a core access pattern when using 

NoSQL databases and websites usually construct 

URLs that exhibit this access pattern. 

These are absolutely over the top access patterns, 

but Rakuten Kobo will be building the next gen 

infrastructure and they need to understand how the 

system would behave when a tail risk event happens.

Rakuten Kobo needs to know what to expect on a 

really really bad day, not just when everything is 

smooth sailing.

Other scenarios were also tested (getting all the 

results for such a query, for example), but those tend 

to not be as performance sensitive and usually are 

broken apart to separate requests because of the data 

sizes involved.
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Environment 
Configuration

For all tests, the operating system used was Ubuntu 

20.04 with the default configuration. No modifica-

tion to the operating system, kernel or base system 

configuration and the file system was ext4, with 

default configuration.

No caching was used by the web application to ensure 

that every request hit the storage. 

RavenDB was tested on its default installation with a 

disk quota of 2TB. 

Couchbase required changes to the default instal-

lation. Full ejection mode was necessary to avoid 

running out of RAM. We had to disable index snap-

shots or the 6TB disks used would not have been 

enough. We had to disable auto-rebalance to avoid 

triggering it during the ingestion process crashes. 

It was our intention to run these tests on an 

Enterprise edition of Couchbase, but the licensing 

prohibited it to be used for benchmarking. Their 

community edition has no such restriction up to the 

day of publication of this technical report. 

The versions tested were:

•	 RavenDB 5.1.12 - Released Dec 2020

•	 Couchbase Community 7.0 ver 3739 (beta) - 

Released Nov 2020

Couchbase Community was used since the Couchbase 

Enterprise’s license forbids the publishing of bench-

marks.

Couchbase
Cluster

(3 servers)

RavenDB Cluster
(3 servers)

Web
application

Load test

CONFIG 1 CONFIG 2

ROLE

SPECS

RESERVED
COST

PER
MONTH

MACHINE
TYPE

CONFIG 3

m5a.8xlarge m5a.8xlarge m5a.4xlarge m6g.large m5a.8xlarge m5a.2xlarge

$ 5,917.79 $ 3,767.39 $ 2,816.93 $ 2,080.21 $ 632.91 $ 158.41

32 cores

128 GB RAM

2Tb storage

16 cores

64 GB RAM

2Tb storage

2 ARM cores

8 GB RAM

2Tb storage

32 cores

128 GB RAM

8 cores
32 GB RAM

32 cores

128 GB RAM 

6Tb storage

Fig. 4  Testing hardware configurations
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The Environment
We used cloud instances running on Amazon EC2 

to make it easier to reproduce this benchmark and 

to provide a standardized cost calculation for the 

deployment. 

For this report, we used several hardware configu-

ration. All of them based on specific instance types 

in Amazon EC2. You can reproduce these finding by 

running the same instance types. (See Fig. 4)

For both databases the data was stored on io2 (provi-

sioned IOPS) disks with 4000 IOPS.

The disk selection was done up-front to ensure fast 

access IO. All instances were running in the same 

availability zone inside a single region to reduce 

network latency.

For RavenDB, disk performance wasn’t a major 

factor. We could have run with a gp3 (SSD) without 

any change in behavior. In a production scenario, it 

is preferable that nodes in a database cluster run on 

separate availability zones to maximize survivability.

We wanted to compare, as much as possible, the 

same scenario. So we used a three nodes cluster for 

both databases. For RavenDB, that means a proper 

production deployment, each document residing in 

three separate nodes. For Couchbase, we were forced 

to set things up so each document would only reside 

on a single node.

On RavenDB, the entire dataset was stored on each 

node and we tested multiple cluster configurations 

with 3 nodes for high availability setup:

•	 m5a.8xlarge with 32 cores and 128 GB RAM

•	 m5a.4xlarge with 16 cores and 64 GB RAM

•	 m6g.large with 2 ARM cores and 8 GB RAM

For Couchbase, we tested the scenario using a cluster 

of three m5a.8xlarge instances with 32 cores and 128 

GB RAM. The data was sharded among all three nodes 

with no replication (each document stored only on a 

D
at

ab
as

e
32

 c
or

es
 &

 12
8 

G
B

Web server
32 cores & 128 GB

Load Test
8 cores & 32 GB

QueryLoad

Fig. 5  Testing environment architecture
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single node) to avoid increasing the size of the clus-

ter nodes even more .

The load was generated using wrk2 on the load test 

machine, targeting an ASP.NET Core application 

running on the web server which queries the data-

base backend. (See Fig. 5)

The code for the web applications as well as the load 

generation scripts are available at: https://github.com/

ravendb/kr-benchmark-scripts/tree/mar-2021

The Data Model
You can see a sample document in Listing 1.

The text field in Listing 1 contains the actual high-

lighted text. The other fields in the document include 

the book and the starting location for the highlight.

The ID of the document is composed of the following 

parts “highlights/{userId}-{ebookId}/

{highlightId}”. The reason for this document 

id setup is to allow us to perform the most common 

queries by user and by user and book, using a simple 

prefix search on the document ID. 

On Couchbase, all the data was sharded between 

each of the nodes, so each one of the servers held 

about one third for the data, or about 450 million 

documents. All the documents were held in a single 

bucket.

On RavenDB, replication between the nodes was 

used. The end result is that each node has a copy of 

the entire dataset (1.35 billion documents). As the 

full data set is available on all the nodes, requests are 

load balanced among nodes in the cluster.

The Queries
Both queries tested involved requesting the first page 

of highlights for a particular user or a particular user 

and book.

On RavenDB, for querying the document ID by prefix, 

the analysis team focused on two ways to query the 

data (See Listing 2 and Listing 3).

{

	 “text”: “The squabs are ready for market in four weeks…”,

	 “book”: “ebooks/56717”,

	 “user”: “users/5101859”,

	 “start”: 17665,

	 “at”: “2011-10-16T15:49:15.1660000Z”,

	 “@metadata”: {

		  “@id”: “highlights/users5101859-ebooks/56717/00002180997826-A”,

	 }

}

Listing 1.  An example of a Highlight document
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from Highlights 

where user = $userid 

limit 10

Listing 2.  RavenDB - User's highlights query

from Highlights 

where startsWith('id()', $prefix) 

limit 10

Listing 3.  RavenDB - User's highlights for a specific book 
using prefix query

The first allows us to perform an exact search over 

the Highlights collection and the second performs a 

prefix search on the document IDs, taking advantage 

of the nature of the document IDs used.

Given that the id of the document has the form: 

"highlights/{user}-{ebook}/" (a common 

pattern used in RavenDB and other NoSQL data-

bases), we are able to get a record by user and book 

using just a simple prefix query.

This distinction forces RavenDB to access the data in 

2 different ways. The prefix query retrieves the data 

directly from the storage, while the exact search, the 

first query, is forced to pass through the indexing 

engine. 

While the exact search query can be engineered to 

avoid using the indexing mechanism, for better 

performance in a production system, it is defined 

here this way for the purpose of these tests.

For Couchbase we used matching queries (See Listing 

4 and Listing 5).

select raw a from Library a

where a.`@metadata`.`@collection`  

	 = 'Highlights' and a.`user` = ?  

limit 10

Listing 4.  Couchbase - User's highlights query

select raw a from Library a 

where a.`@metadata`.`@collection`  

	 = 'Highlights' and a.`user` = ?  

	 and a.book = ? 

limit 10

Listing 5.  Couchbase - User's highlights for a specific 
book  query

All queries were parameterized using the client API.

We also implemented the second query using a prefix 

search on the ID for Couchbase (See Listing 6).

select raw a from Library 

where META().id like  

	 'highlights/users/51018-ebooks/567/%' 

limit 10

Listing 6.  Couchbase - User's highlights for a specific book 
using prefix query

A primary index was put in place to do an 

efficient prefix search on document ids as 

explicitly referenced in the documentation. With the 

recommended method we observed very high CPU 

spikes (80%+), very high latencies and timeouts at 

just a hundred concurrent requests.
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Indexing
Both RavenDB and Couchbase have asynchronous 

indexing processes. We let the indexing task complete 

and run all the queries without any contending 

outstanding writes. 

RavenDB allows you to either define indexes explic-

itly or let the database engine figure out on its own 

what fields are of interest. RavenDB will create 

automatic indexes to cover those interesting fields 

and maintain such indexes automatically. For the 

purpose of this test, the user field on the Highlights 

collection was indexed explicitly as this is the recom-

mended practice for large production databases. 

For Couchbase, we defined two GSI indexes on the 

Highlights collection. One to cover the user and book 

fields, and one primary for the primary key that 

remained unused. In the current Rakuten Kobo’s 

prototype implementation, views were used for this 

purpose but under the tests conditions their current 

implementation showcased higher query laten-

cies. Therefore, we selected GSI indexing and N1QL 

queries to compare against.

Testing
The main driver for the next gen infrastructure 

is to prioritize responsiveness under load spikes 

than raw throughput. The key metric selected was 

latency of requests. Each test simulates a load spike 

over a period of three minutes, ensuring the cluster 

is stressed enough while background operations, 

garbage collections and maintenance/cleanup 

continue to be executed. 

The tests were run with the wrk2 tool with 128 

connections across 8 threads. The benchmark scripts 

as well as the web application that talk to the data-

base can be found at: https://github.com/ravendb/

kr-benchmark-scripts/tree/mar-2021

Service Level Agreements are usually expressed in 

the percentage of requests that must complete under 

a specific latency goal; thus, these are the most 

interesting numbers when you need to select your 

database.

At Rakuten Kobo the user experience is of paramount 

importance. After understanding the requirements 

we focused on the 95-percentile and 99-percentile 

which are the most likely to generate timeouts at the 

clients and impact user experience. 

For the purposes of this study, we agreed before 

starting that the acceptable maximum latency was 

200ms.

Users and Books 
Highlights Queries

The Users’ Highlights query was tested on both 

databases in increments until the 200ms threshold 

was reached on the reference cluster (3x 32 cores 

with 128 GB of RAM). As shown in the latency distri-

bution, Couchbase arrived at the 200ms threshold 

in the 20-percentile at 250 requests/sec - failing 

the test in the first run. RavenDB could handle up to 

15,000 requests/sec before reaching the predefined 

threshold (See Fig. 6).

Of those 15,000 requests per second, 93% of the 

requests were served within 200 ms and over 85% 

were below 50ms. At 5,000 requests per second the 
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excess capacity enabled 97% of the requests to be 

served under 20ms. 

In the User's highlights query case, we are testing 

the performance of using an index to find results, 

and then fetching them from the document store 

for both RavenDB and Couchbase. If you design your 

document id structure, you can issue some queries 

directly on the document store, bypassing the need 

for an index entirely, which is exactly what the 

Books’ Highlights query is doing for RavenDB (See 

Fig. 7). We attempted to do the same for Couchbase, 

but found that the CPU cost was immense and the 

cluster was unable to maintain even a rate of 100 

requests per second with key prefix queries.

The Books’ Highlights query has a more stable 

behavior with RavenDB being able to handle effort-

lessly up to 99.9% of the requests below 50ms on 

the reference cluster setup. Being able to query the 

storage directly without using the indexing engine 

ensures the throughput is not taxing the system. At 

the next increment on this test (30,000 requests/

sec) the client machine becomes the bottleneck 

and measurements become unreliable after the 

99-percentile and would require a distributed load 

infrastructure that was not available to the analysis 

team in time of the creation of this report. 

These numbers were obtained with equal processing 

hardware: 3 nodes at 32 cores and 128 GB per node. 

Rakuten Kobo concluded that this scenario could not 

be satisfied with Couchbase as the provider.

Accessing the Data 
by Key

As a reference to understand the impact access to IO 

has, we decided to test both databases in two differ-

ent scenarios. In the Cold-Start scenario, the test 

has to be done after rebooting the system to ensure 

the Operating System buffers do not contain pages 

belonging to the data and therefore every request 

requires to hit the disk. 
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In the second scenario, a warming run process was 

executed on RavenDB before the actual test to ensure 

a reasonable preloading of the entire database into 

memory to mimic Couchbase startup preloading keys 

and values into memory. With Couchbase, a node 

will not go online until it loads all the document keys 

from the disk. Every time a node goes up it needs to 

read 450 million keys and values before being able 

to serve requests. The forced preloading process 

impacts startup time and availability.

The access latency was tested until the client became 

the bottleneck. We concluded that this is the scenario 

where Couchbase shines. Having both the data and 

keys in-memory pays off in diminished latency. 

When used as a persistent caching solution the 

resulting latencies are very stable across the board. 

When in Cold-start, Couchbase was not available to 

serve requests for ~13 minutes and therefore it was 

not included in the analysis. More on this in the oper-

ational concerns section. Conversely, RavenDB was 

available for servicing requests after a few seconds 

of starting the server at a reduced performance level. 

Even for the cold start scenario, RavenDB was able 

to handle over 95% of the requests in the 200ms 

allotted time, and as it was able to move things to 

memory, performance improved steadily over time.

We asked specifically about the impact on the oper-

ations, Trevor gladly gave us a very detailed expla-

nation of what this means for Rakuten Kobo, the key 

takeaway was: 

"When we switch primary nodes for 
RavenDB, we notice performance drop for 
a while. Took us by surprise a few times, 
but wasn’t any major concern."

Trevor, Rakuten Kobo CTO

On the other hand, when running the same scenario 

with Couchbase, the node is entirely unavailable 

while it is reading from the disk. In the case of failure, 

this means that RavenDB will be back and running 

within seconds, even if it needs some ramp up time. 

Couchbase will take many minutes to start fielding 

any requests. From the Operations team point of 
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view, you can imagine which situation is preferred. 

We’ll discuss this more in the Operational Concerns 

section.

During the Cold-start test, there were no outstand-

ing writes happening, so Couchbase behaves as an 

in-memory cache. Conversely, RavenDB doesn't 

have a facility to preload the entire database in 

memory and will do the loading on-demand in the 

same way it would handle databases several orders 

of magnitude larger than the available memory per 

node. (See Fig. 8)

When warmup is included, up until the 99.9-percen-

tile with 30k request/sec, the results are almost indis-

tinguishable. At those levels, a single request that has 

to hit the disk would negatively impact the results. 

Observations of the RavenDB CPU consumption 

never moved higher than 50% on any of the nodes 

of the clusters during the test time, and the average 

time for all requests was 4.52±3.24 ms (4.52ms as the 

mean and 3.24ms as the variance). As the client starts 

to become the bottleneck, we couldn’t increase the 

load higher to distinguish if that is a measurement 

artifact by a few hits to the disk, or the actual behav-

ior at that load point.

In the otherwise stable behavior at 10k requests/sec 

it can be seen that the latency at those levels where 

both systems have excess capacity is excellent. All 

of the requests were able to be served at less than 

60ms with a staggering low latency of 6ms for the 

99-percentile for both solutions. (See Fig. 9)

Discussion
Both solutions performed admirably when accessing 

by key for less than 30k requests/sec at almost the 

same price point. Couchbase has a slight advantage 

due to keeping all the data in memory, but this comes 

at a higher cost of vastly increased startup time as 

well as much higher disk usage. Beyond 30k requests/

sec the conclusion is that a deeper investigation and 

an advanced distributed testing infrastructure would 

be needed to be done to rule out measurement arti-

facts.
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When indexing is required, the conclusion is that 

an alternative solution like Elasticsearch would be 

required when using Couchbase.

Under the recommendation of the RavenDB 

Performance Team, noticing the extra capacity on 

the 10k request/sec scenario, a few more tests were 

run with downsized hardware to understand scaling 

costs. 

Because of how Couchbase is designed, the minimum 

cloud hardware required to handle the benchmark on 

AWS is a cluster of 3 nodes of m5a.8xlarge instances 

(32 cores and 128 GB of RAM) with the data sharded 

among the nodes, without replication. That isn’t a 

viable production configuration, of course.

Looking at the sizing guide for Couchbase, and taking 

into account that a production environment cannot 

run with a single copy of the data, we estimate that a 

production cluster to serve this scenario would take 

5 servers with 192 GB each. This assumes a working 

set of 20% of the data to reside in memory and three 

replicas for each document. 

On premise, adding more RAM has a rather marginal 

cost, but on the cloud the relevant instance for the 

requirement is m5a.12xlarge, which comes at a 48% 

premium. A cluster of 5 such machines would have a 

total of 240 cores and 960 GB of RAM and a total disk 

usage of 30 TB.

The recommended setup for production would be 

bigger than the one showcased here and it would cost 

significantly more as well. When selecting a database 

solution, one does not look simply at the perfor-

mance numbers, but also at what resources it takes 

to achieve them. 

This benchmark puts a very high bar for passing. 

Handling thousands of queries per second with low 

latency is a load very few applications need to face. 

Therefore, we decided to see how far we could step 

down the hardware requirements for RavenDB and 

what would be the acceptable performance at each 

price point.

For RavenDB we selected the default setup for the 

cluster as reference which matches Couchbase 

performance to compare against: m5a.xlarge (4 
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cores, 16GB) and a Graviton ARM m6g.large (2 cores, 

8GB). (See Fig. 10)

RavenDB is able to handle gracefully 10,000 requests 

per second at the 99-percentile with a latency below 

200ms on a 2TB database using an ARM Graviton 

processor (2 cores, 8 GB of RAM) at an annualized 

cost of $1,185 + storage costs for the entire cluster.

For more performance conscious applications at the 

99.9-percentile, a cluster composed of three m5a.

xlarge nodes is able to serve 10,000 requests per 

second with latencies below 110ms at an annualized 

cost of $2,658 + storage costs. The reference cluster 

would cost $24,699 per year without including stor-

age cost at comparable latency. 

For the cases of the Books and Users highlight 

queries, comparisons were performed against a 

RavenDB reference cluster. Couchbase was not able 

to complete a test run at 250 requests per second 

without timeouts.

If the solution requires the usage of queries, there is 

not enough spare capacity at the 1,000 requests per 

second to be able to downsize the environment up 

to 2 cores Graviton range (See Fig. 11). However, as 

shown in the mid size cluster, it is possible to sustain 

up to 1,000 requests per second within the threshold 

even using queries. The memory size and limited core 

count of the smallest Graviton cluster cannot sustain 

1k request/sec. 

The absolute downsizing limit for half the load at 

500 requests per second was found to be even lower 

than the ARM system. The system which was used for 

comparison in this report was a single Raspberry PI 

4 with 4GB and a USB connected SSD. At that refer-

ence load, it is able to sustain at the 99-percentile a 

latency well under 50ms as shown below. (See Fig. 12)
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Couchbase cluster of three nodes with a 
total of 96 cores and 384 GB RAM was 
unable to sustain 250 queries per second. 
A single RavenDB node running on a 
Raspberry PI 4 with 4 cores and 4 GB 
of RAM was able to answer 500 queries 
/ second in under 200ms in the 99 
percentile.

If the system can be engineered to ensure that 

requests are dominated by high performance prefix 

queries, even at the smallest cluster composed with 

nodes of 2 cores with 8GB of memory, the query-

ing system can sustain 10,000 requests per second 

within the 200ms threshold for the 99-percentile. 

(See Fig. 13)
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Operational 
Considerations

Reliability is key for Rakuten Kobo operations. 

"Resilience and fast recovery isn't just 
about surviving a node crashing. They are 
essential for good hygiene too"

Trevor, Rakuten Kobo CTO

Therefore, we evaluated other scenarios of interest 

in relationship to the performance behavior under 

duress. Failure recovery is one of the most common 

situations where under a bad situation we may be 

adding more stress. 

For high availability, the deployment of a cluster is 

a must. When some of those nodes fail, the cluster 

needs to handle that and recover. Both systems 

handle such failures automatically and transparently 

by default, however there are important differences 

between their behavior. 

In order to understand what to focus on, we inter-

viewed key people at Rakuten Kobo about the key 

pain points on their current deployment.

A node failure in Couchbase will trigger an attempt to 

rebalance the data between the surviving servers. In 

the case of transient errors, this can lead to spikes in 

database loads at the moment of the fault. Faults will 

cause overhead on top of the reduction in the capacity 

caused by a fault of a node in the cluster. Therefore, it 

is expected that Couchbase nodes should be overpro-

visioned with extra idle compute capacity on standby 

in case a node goes down and self-healing behavior 

is triggered. 

RavenDB systems are based on a cooperative process 

between the clients and the servers. A failed server 

does not trigger any special action on the cluster, 

the clients are already aware of the succession node 

list and will failover to the next server immediately. 

Transient errors will simply cause a redirection of 
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traffic into other nodes without the end application 

noticing that something happened beyond a few 

requests that may be slower than usual. 

Behind the scenes, RavenDB will monitor the state 

of the node and its recovery. Experience has shown 

that it is rare to completely lose a node, so RavenDB 

defaults to ensuring the liveliness of the system and 

waiting for the node to return. 

RavenDB Enterprise edition is able to automatically 

ensure the appropriate number of replicas for the 

data on the failed node is maintained. That is useful 

if you expect a node to go down and stay down for a 

long period of time. That requires an extended outage 

to trigger, in the order of minutes. In the meantime, 

the cluster and the clients will automatically adjust 

the load, without the need for expensive operations.

These rebalancing operations are only triggered after 

a sensible time has passed in order to avoid initiating 

maintenance costs after server restarts or network 

glitches. All maintenance operations are performed 

on the cluster’s spare capacity, and the cluster will 

always prioritize users’ requests over background 

operations.

A RavenDB node failure is not treated as a priority 

operation to allow DevOps to handle seamlessly 

rolling updates for the clusters. Updating the cluster 

is a routine operation where nodes are taken down 

one at a time in order for DevOps teams to perform 

maintenance operations and then rejoin the cluster.

RavenDB expects nodes to fail and handles that 

gracefully and seamlessly. By making the failure of a 

node a non-event, RavenDB provides the Operations 

teams with the ability to treat the nodes as hot spares. 

You can take one down at any time, for any reason, 

and nothing major will occur. 

Couchbase behaves in a similar way, in theory. A 

node is allowed some downtime before automatic 

steps are taken to rebalance the cluster. A confluence 

of design choices may allow those small failures to 

have cascading impact. During startup, it will need 

to read the entire metadata library on the server into 

memory. With big databases like the one tested here, 

it ranged from 10 to 20 minutes on an io2 drive with 

4,000 provisioned IOPS to be able to serve requests. 

"We didn't upgrade the Couchbase version 
for years because we were fearful of taking 
a node down. Additionally, if we needed to 
increase the capacity of the cluster we had 
to add a node. And that would also cause a 
rebalance and outage."

Trevor, Rakuten Kobo CTO

Even after a Couchbase node is up, it takes even 

longer for indexes to become available. After a node 

failure, we observed that even after the node came 

back up and loaded the document’s data, the index 

remained in a warmup state for a long time. In one 

scenario, a single index was still in the warmup stage 

after 30 minutes from the node restarting, during 

which time no queries could be served by those 

indexes. 

There are many reasons why the Operations team 

may want to restart a node. Patching the database 

software or the underlying operating system is prob-

ably one of the most common reasons. However, if 

such operations will cause a rebalance, with its asso-

ciated costs, it will be avoided at almost any cost.

Certain operations in Couchbase, like changing the 

hostname of the node, will require the node to be 

removed from the cluster and then rejoined, inducing 

a rebalancing operation. At the sizes tested, a rebal-

ance operation takes 40 hours. 
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On the other hand, RavenDB uses a write ahead log. 

The only work a restarting or rejoining node needs to 

do on startup is to replay the unregistered transac-

tions, which is independent of the database size. If no 

writes had happened between leaving and rejoining 

the cluster, no work needs to be done. And only the 

new writes will be replicated when the node joins. 

After some time of Rakuten Kobo using RavenDB in 

production we came back to this particular question 

as it was of particular importance for our team. 

“We're able to keep up with every minor 
release. Shutting down a node, upgrading 
the RavenDB version and restarting it is 
a non-event and one that takes under a 
minute. That's unthinkable with what 
happens with Couchbase and its auto-
rebalancing.” 

Trevor, Rakuten Kobo CTO

The Bottom Line
In every large-scale deployment, efficient software 

generates benefits at the bottom line. At the same 

performance level the current hardware budget can 

be reallocated to new services and other uses when 

the next gen infrastructure is rolled into production. 

The Couchbase reference cluster is the bare minimum 

for the database size with no replication and no data 

redundancy. We tried to downscale the cluster after 

ingestion to 16 cores and 64 GB RAM per node, but 

the cluster suffered repeated failures due to memory 

exhaustion. 

Using the guidance from Couchbase’s documentation, 

we estimate that this workload requires (at a mini-

mum) a 5 nodes with 192GB RAM and a replication 

factor of 3. We selected the m5a.12xlarge AWS 

instance with 48 cores and 192GB RAM as the rele-

vant instance type for our computations.

The following chart (See Fig. 14) summarizes the 

annual cost of ownership at the different sustained 

load requirements between the competing solutions 

where both can successfully finish the scenario.

The Budget Cluster specification is designed 

around being able to trade off cost for latency at the 

95-percentile level, while the High-Performance 

Cluster will try to match or surpass the capability at 

the 99.9-percentile level. 

The following numbers show just how much hard-

ware you’ll need to use to meet your performance 

goals with Couchbase and RavenDB.

It’s important to note that Couchbase according to 

our tests is unable to actually handle queries with any 

real load associated with them. In our estimation, in 

addition to the Couchbase cluster, you’ll need to also 

run a separate system for queries. For example, using 

Elasticsearch to query the data, and then loading the 

data from Couchbase. 

RavenDB,on the other hand, is able to fill 
both roles, and at a much reduced price 
tag.
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$15,920.16 / year

Fig. 14  Cluster costs at various workloads RavenDB and Couchbase.  
Achieving the same 99.99-percentile latencies
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About RavenDB
RavenDB is a pioneer in NoSQL database technol-

ogy with over 2 million downloads and thousands 

of customers from startups to Fortune 100 Large 

Enterprises.

Mentioned in both Gartner and Forrester research, 

over 1,000 businesses use RavenDB for IoT, Big Data, 

Microservices Architecture, fast performance, a 

distributed data network, and everything you need to 

support a modern application stack for today’s user. 

For more information please visit: 

ravendb.net

Contact us at:  

info@ravendb.net

Documentation 

https://ravendb.net/learn/docs-guide

Use Cases 

https://ravendb.net/news/use-cases

Free Online Training 

https://ravendb.net/learn/bootcamp

Webinars 

https://ravendb.net/learn/webinars

RavenDB Download 

https://ravendb.net/download

RavenDB Cloud Database as a Service  

https://cloud.ravendb.net/

24

http://ravendb.net
mailto:mailto:info%40ravendb.net?subject=
https://ravendb.net/learn/docs-guide
https://ravendb.net/news/use-cases
https://ravendb.net/learn/bootcamp
https://ravendb.net/learn/webinars
https://ravendb.net/download


Houston • Buenos Aires • Hadera • Toruń

US Number:  1-817-886-2916

info@ravendb.net

© Hibernating Rhinos,  Ltd.  Al l  r ights reserved.


	Couchbase vs RavenDB Performance at Rakuten Kobo
	Key Findings
	The Dataset
	Loading the Data
	Disk Usage
	The Test Environment
	Environment Configuration
	The Environment
	The Data Model
	The Queries
	Indexing
	Testing
	Users and Books Highlights Queries.
	Accessing the Data by Key
	Discussion
	Operational Considerations
	About RavenDB


