
W H I T E P A P E R

Couchbase vs RavenDB
Performance at Rakuten Kobo

Contents

Couchbase vs RavenDB Performance at Rakuten Kobo��2

Key Findings���3

The Dataset���3

Loading the Data��5

Disk Usage�� 6

The Test Environment��8

Environment Configuration��9

The Environment���10

The Data Model���11

The Queries��11

Indexing��� 13

Testing��� 13

Users and Books Highlights Queries.�� 13

Accessing the Data by Key���14

Discussion���16

Operational Considerations��� 20

About RavenDB�� 24

1

Couchbase vs RavenDB Performance at Rakuten Kobo

Couchbase vs RavenDB Performance
at Rakuten Kobo

Rakuten Kobo Inc. is one of the world's biggest digi-

tal booksellers. Owned by Tokyo-based Rakuten and

headquartered in Toronto, Rakuten Kobo enables

millions of readers worldwide to read anytime,

anywhere, on any device. Rakuten Kobo connects

readers to stories using thoughtful and personal-

ized curation of eBooks and audiobooks, and the

best dedicated devices and apps for reading. With

the singular focus of making reading the finest

experience, Kobo's open platform allows people to

fit reading into their busy lives.

Users purchase books, store their highlights made on

a book, and track their notes. To make that possible,

the backend servers must synchronize data with the

e-readers on a regular basis.

With over tens of millions of devices, a normal day

at Rakuten Kobo looks like a denial-of-service attack

for most businesses. In determining the best storage

solution for their next gen infrastructure the Kobo

team, led by Trevor Hunter the CTO, wanted to see

how RavenDB would stack against one of the data-

bases they already had in their infrastructure.

Kobo has been using Couchbase for a while for a

different purpose and wanted to see what would be

the best tool for the job to hold the data for the new

e-books backend. This report benchmarks RavenDB

against Couchbase.

Kobo worked with us to build a clean dataset that

matched their data distribution using publicly avail-

able data to have a reproducible environment for

evaluation. The dataset consists of 1.35 billion docu-

ments with a database size of 985GB.

Under load, RavenDB matches or exceeds
Couchbase performance at the 99.99
percentile with third of the hardware
resources. In the cloud this translates to
80% cost savings.

2

Key Findings
•	 Comparable performance (up to 99.99-percen-

tile) when accessing data by key.

•	 RavenDB outperforms Couchbase by orders of

magnitude when using queries under load.

•	 Couchbase proved fragile in production, with high

overhead on failure conditions. RavenDB’s failure

model, on the other hand, proved resilient and

allowed much higher operational flexibility and

peace of mind.

•	 RavenDB stores the data at ⅓ of the storage

needed by Couchbase.

•	 RavenDB cloud budget configurations are

80% cheaper at a comparable, 99.99 percentile

latency.

The Dataset
To let anyone study these results, our team used

publicly available data. The final database export is

available for anyone wanting to reproduce the find-

ings shown in this report.

To match the typical usage scenario of the expected

next gen infrastructure, we sized the deployment for

a realistic expected usage scenario.

The dataset contains 1,357,692,380 (1.35 billion)

documents divided into the following collections:

•	 69.38 million Users. The total number of users

in the model. A user may have multiple devices

and can sync the data across all of them. We

used the Reddit users’ database available at:

https://bit.ly/3j4yTCe

•	 6 3 , 5 1 0 B o o k s . e B o o k s t a k e n f r o m

Project Gutenberg. This includes both the book’s

metadata as well as their content.

•	 734.22 million UsersBooks. Associating a book

to a user, usually representing a user purchasing

a particular book. This was generated randomly,

using long tail distribution.

3

Couchbase vs RavenDB Performance at Rakuten Kobo

https://bit.ly/3j4yTCe
http://www.gutenberg.org/

•	 497.03 million Highlights. A core enhancement

on the reading experience is supporting high-

lighting phrases and paragraphs in any book

accessible by a user. The highlight data includes

the position and length of the highlight as well as

its actual text.

•	 28.78 million Editions, 20.3 million Works and

7.89 million Authors. These documents represent

additional information about the books in the

dataset.

To mimic the Rakuten Kobo data distributions

found in the private data, we used a typical long tail

distribution from books to users. It is expected the

number of books per user would be similar. Still, in

some cases, Rakuten Kobo has users that represent

libraries / collections that may accumulate a lot of

books. The former typically will have a small amount,

and while the latter are not a normal occurrence, they

would be quite taxing when accessed. As an example,

the whole Project Gutenberg collection would include

more than 60,000 books.

Given the data distribution, the relationships created

is roughly three-quarters of a billion (See Table 1).

Regarding the number of highlights per user, the

top 10,000 users have significantly more books than

the top used in the Rakuten Kobo actual dataset. The

primary objective of oversizing highlights is to test if

the infrastructure can grow in functionality for both

user and machine-generated content and therefore

encounter queries with many potential results.

For context, Goodreads has an annual reading chal-

lenge. The average pledge for reads in 2020 was 61

books. That means that after a few years, a moder-

ately heavy reader will accumulate a few hundred

books quite easily.

In terms of highlights, Rakuten Kobo’s data has

many users with no or just a few user-generated

highlights. The overall average is about 10 highlights

per user, with the 99-percentile coming in under

250 highlights. However, some users are really heavy

users of highlights, with some approaching 20,000

highlights.

The total number of documents that we used was 1.35

billion. The database export for this dataset is 108GB

of compressed data. The export file is available at

(https://bit.ly/3rhVNZ6 – note 108GB) in RavenDB

dump format ready to be imported to a RavenDB

database.

Number of users Number of highlights

1 203,550

428 100,000 – 200,000

10,622 10,000 – 100,000

20,340 1,000 – 10,000

67,249 100 – 1,000

59,827 10 – 100

10,158,123 2 – 10

43,425,405 1

Table 1. Testing data distribution

4

http://www.gutenberg.org/
https://bit.ly/3rhVNZ6

Loading the Data
The number of documents in the dataset represent

a reasonably sized dataset, both in terms of the

actual size of the data and the number of documents.

Loading the dataset represents a sizable amount of

time.

For RavenDB it took less than a day.
For Couchbase it took almost four days.

When loading the data into RavenDB, we used a

machine with 8 cores and 32 GB of RAM with default

configuration. The actual tests were run on several

different machines.

We attempted to load the same dataset into

Couchbase as well, but we ran into a few problems.

By default, Couchbase stores all the metadata about

documents in memory. For the workload involved,

this became highly problematic. The memory used by

Couchbase per key is the document key length plus

56 bytes.

With 1.35 billion documents, some of the documents

have long ids (around 60 bytes). Along with the

metadata overhead, Couchbase required 162 GB of

RAM just to store the document IDs while RavenDB

managed just fine to work with entire dataset using

32 GB.

Couchbase has an option that avoids holding the

entire set of document keys in memory. It is called

Full Ejection and allows Couchbase to reduce the

amount of data that must be kept in memory.

For best performance, Couchbase recommends avoid-

ing this setting. However, that requires you to signifi-

cantly increase the size and capacity of your nodes.

In our experiments, to get good performance without

Full Ejection, we had to massively overprovision the

cluster, to the point where it made no economic sense

whatsoever. Performance alone isn’t sufficient, part

of the equation is the cost of resources needed to

achieve this performance.

Even with setting the Ejection Method to Full,

Couchbase nodes consumed too much memory and

crashed (See Fig. 1). Without sufficient computing

and memory resources, we observed the nodes

consuming all available memory and processes

being killed by the Operating System. We increased

the size of the deployment until nodes could ingest

the whole dataset. The minimum hardware required

to complete the goal was a cluster of 3 nodes with 32

cores and 128 GB of RAM per node.

Even with 128GB per node, we observed Couchbase

consuming more memory than was available on the

machine, taking the entire machine down in the

process. Using too much memory and ending up

spending a lot of time in page faults rendered the

node completely inaccessible, attempting to restart

Fig. 1 Unresponsive Couchbase node after memory failure

5

Couchbase vs RavenDB Performance at Rakuten Kobo

https://blog.couchbase.com/a-tale-of-two-ejection-methods-value-only-vs-full/

the service or the machine was not always successful.

This happened with no swap as well as with a 32GB

swap in place.

We initially defined the default 90% of memory

dedicated to Couchbase, but after repeated failures

we reduced it to 80GB out of the 128GB during the

ingest process. This reduced the outages to the point

where we could complete the ingestion. During the

ingestion process, we introduced breaks now and

then for a few hours to let the cluster do its own

book-keeping and management instead of putting it

under constant load.

We also had to throttle down the ingest speed.

The ingest process for RavenDB was performed on

a single node with 8 cores, 32 GB RAM and default

configuration while replicating to the rest of the

nodes in the cluster. For Couchbase, we set up shard-

ing from the start. The minimum viable hardware

configuration that could finish the task required 32

cores and 128 GB RAM for each of the three nodes.

That is 12 times higher than the configuration

used for RavenDB for the same ingest scenario. We

consider this to be the bare minimum hardware to

sustain this load on Couchbase. In fact, this is explic-

itly below what we could tolerate in production. There

is just a single copy of each document in Couchbase,

which means a single node going down will result

in data loss or data unavailability. A more realistic

scenario would be a five node cluster, with the data

replicated to three other nodes.

See the following section for more details on the

issues we have encountered.

Disk Usage
A major difference between RavenDB and Couchbase

was discovered during the ingest process. In

RavenDB, the data was stored with full replication

between the nodes. Every single node holds the full

data set of 1.35 billion documents. The size of the data

on disk was 985 GB, with another 120 GB for indexes.

The system was provisioned with 2TB disks and it

used just over half.

Couchbase was more challenging for the following

reasons:

1.	 The database was sharded and we used a repli-

cation factor of 1, so each document only existed

on a single node. We assumed that sharding the

data would need a lot less disk space, so initially

we provisioned the Couchbase nodes with 1TB

disks. Instances quickly ran out of disk space once

we uploaded 30% of the data, therefore we had to

double the disk allocation several times to reach

the ingestion and initial indexing goal.

Each Couchbase node required 6 TB of
available storage to finish loading all of
the data successfully.

To hold the entire dataset, we would need to

double that or triple that again, per node. If each

node would hold the entire 1.35 billion records

as well, the amount of memory (even with Full

Ejection) that would be dedicated just to metadata

storage would force us to give even more memory

for each node.

2.	 Couchbase uses an append-only + compaction

model to write to the disk. Each write is written

to the end of the data file. This approach allows

Couchbase to simply scan from the end of the file

6

on startup to find the most recent valid transac-

tion. Unfortunately, this approach comes at a cost.

When documents are deleted or modified, they

aren’t updated in place but written (again) to the

end of the file, causing the disk usage to increase

substantially under write load.

Older versions of the values in the file are not

modified, but they are now no longer needed. A

compaction step is required to free the disk space.

Couchbase performs this operation by writing

a new file, with only the valid data. This was a

simplified explanation of a fairly complex piece of

technology, for details on the actual behavior you

can consult the Couchbase documentation.

RavenDB uses a technology known as Write Ahead

Log and MVCC to guarantee full ACID protection.

It will hold duplicate versions of modified data as

long as there are active transactions that may need

to access old data. Once those transactions are

complete, the space that the old values used can

be immediately repurposed. There is no need for

VACUUM or ongoing maintenance. The amount of

space used for metadata overhead is minimal with

a good balance between performance and disk

utilization.

During compaction, Couchbase may require

significantly more disk space. In our scenario,

we were writing each document once, with no

updates or deletes. We still observed compactions

multiple times during the ingestion process (See

Fig. 2).

When compaction started, disk utilization was

extremely high and the IO queue length grew

very fast. During the ingest process, we observed

that the compaction process could run for several

hours. A late compaction process was observed

taking over 12 hours of processing.

With just 1TB disks, Couchbase filled the entire

disk under those conditions, then crashed when it

failed to write to the disk. We compensated that by

using 2TB disks. Couchbase would then consume

all the disk space on those as well.

A single secondary index used 450GB of disk

space (See Fig. 3). Couchbase is maintaining index

snapshots to be able to roll back in the case of a

node failure. You can control the number of snap-

shots that are kept using the Max Rollback Points

configuration option, but to keep the disk usage

under control for the purpose of the tests a single

snapshot was used.

The index snapshots as well as the index itself

running compactions would easily consume the

entire available disk space. The final index file

was 1.2TB in size, but under compaction it could

balloon to 2.5TB. We were required to increase

the disk size of the nodes up to 6TB in order to

successfully complete the ingest and indexing

processes.

3.	 Disk usage behavior, for data / index compac-

tion as well as the snapshot feature shows that

Couchbase requires a significantly higher number

Fig. 2 Couchbase Compaction process

	 “data_size”: 82607640099,

	 “disk_size”: 484163817472,

Fig. 3 Couchbase metrics showing the size of a secondary
index and its disk space usage. The index size is 77GB but

the size on disk is 450GB

7

Couchbase vs RavenDB Performance at Rakuten Kobo

of IOPS than the observed for RavenDB during

the execution of the same task. Both peak I/O and

sustained IOPS were higher than for RavenDB.

In the cloud, you pay for IOPS and you may be

using burstable disks, resulting in higher financial

costs.

The Test Environment
Rakuten Kobo’s scenario has millions of devices that

will sync periodically to the cloud with new books or

annotations for each user. In many cases, the load is

generated by automated sync processes and not just

by users’ actions.

Kobo has sold a lot of devices, so the work generated

to the service can be expected to be a fairly constant

load from a multitude of devices. Slow queries cause

requests to pile up and devices may timeout. In that

case, they’ll retry the sync operation at a later time,

deferring the load.

Infrastructure must also deal with less frequent

operations. Things like users getting a new device

and syncing their entire history, or pulling an old

device from a drawer and starting to read.

The analysis team focused on the most common

scenarios to benchmark:

•	 Highlights by user. Get the first page of all high-

lights for a user across all books and filter on a

single property.

•	 Highlights for a book and a user. Get the first

page of all highlights for a user in a specific book

and filter them on multiple properties.

•	 Users by ID. When we know the document ID and

can fetch it directly.

Tests for the first two queries were performed by

selecting the first 100,000 users with the highest

number of books and highlights in order to stress the

storage solution. Then, we used a random sampling

from that list to generate requests on behalf of those

users causing the load to match a random-access

pattern. The duration of the test and the number of

requests ensure that we’ll cover the entire 100,000

users.

Tests for the last query, Users by ID, were done on a

list of all users, with each query requesting a differ-

ent user by ID. The reason to test this use case relies

on the fact that it is a core access pattern when using

NoSQL databases and websites usually construct

URLs that exhibit this access pattern.

These are absolutely over the top access patterns,

but Rakuten Kobo will be building the next gen

infrastructure and they need to understand how the

system would behave when a tail risk event happens.

Rakuten Kobo needs to know what to expect on a

really really bad day, not just when everything is

smooth sailing.

Other scenarios were also tested (getting all the

results for such a query, for example), but those tend

to not be as performance sensitive and usually are

broken apart to separate requests because of the data

sizes involved.

8

Environment
Configuration

For all tests, the operating system used was Ubuntu

20.04 with the default configuration. No modifica-

tion to the operating system, kernel or base system

configuration and the file system was ext4, with

default configuration.

No caching was used by the web application to ensure

that every request hit the storage.

RavenDB was tested on its default installation with a

disk quota of 2TB.

Couchbase required changes to the default instal-

lation. Full ejection mode was necessary to avoid

running out of RAM. We had to disable index snap-

shots or the 6TB disks used would not have been

enough. We had to disable auto-rebalance to avoid

triggering it during the ingestion process crashes.

It was our intention to run these tests on an

Enterprise edition of Couchbase, but the licensing

prohibited it to be used for benchmarking. Their

community edition has no such restriction up to the

day of publication of this technical report.

The versions tested were:

•	 RavenDB 5.1.12 - Released Dec 2020

•	 Couchbase Community 7.0 ver 3739 (beta) -

Released Nov 2020

Couchbase Community was used since the Couchbase

Enterprise’s license forbids the publishing of bench-

marks.

Couchbase
Cluster

(3 servers)

RavenDB Cluster
(3 servers)

Web
application

Load test

CONFIG 1 CONFIG 2

ROLE

SPECS

RESERVED
COST

PER
MONTH

MACHINE
TYPE

CONFIG 3

m5a.8xlarge m5a.8xlarge m5a.4xlarge m6g.large m5a.8xlarge m5a.2xlarge

$ 5,917.79 $ 3,767.39 $ 2,816.93 $ 2,080.21 $ 632.91 $ 158.41

32 cores

128 GB RAM

2Tb storage

16 cores

64 GB RAM

2Tb storage

2 ARM cores

8 GB RAM

2Tb storage

32 cores

128 GB RAM

8 cores
32 GB RAM

32 cores

128 GB RAM

6Tb storage

Fig. 4 Testing hardware configurations

9

Couchbase vs RavenDB Performance at Rakuten Kobo

The Environment
We used cloud instances running on Amazon EC2

to make it easier to reproduce this benchmark and

to provide a standardized cost calculation for the

deployment.

For this report, we used several hardware configu-

ration. All of them based on specific instance types

in Amazon EC2. You can reproduce these finding by

running the same instance types. (See Fig. 4)

For both databases the data was stored on io2 (provi-

sioned IOPS) disks with 4000 IOPS.

The disk selection was done up-front to ensure fast

access IO. All instances were running in the same

availability zone inside a single region to reduce

network latency.

For RavenDB, disk performance wasn’t a major

factor. We could have run with a gp3 (SSD) without

any change in behavior. In a production scenario, it

is preferable that nodes in a database cluster run on

separate availability zones to maximize survivability.

We wanted to compare, as much as possible, the

same scenario. So we used a three nodes cluster for

both databases. For RavenDB, that means a proper

production deployment, each document residing in

three separate nodes. For Couchbase, we were forced

to set things up so each document would only reside

on a single node.

On RavenDB, the entire dataset was stored on each

node and we tested multiple cluster configurations

with 3 nodes for high availability setup:

•	 m5a.8xlarge with 32 cores and 128 GB RAM

•	 m5a.4xlarge with 16 cores and 64 GB RAM

•	 m6g.large with 2 ARM cores and 8 GB RAM

For Couchbase, we tested the scenario using a cluster

of three m5a.8xlarge instances with 32 cores and 128

GB RAM. The data was sharded among all three nodes

with no replication (each document stored only on a

D
at

ab
as

e
32

 c
or

es
 &

 12
8

G
B

Web server
32 cores & 128 GB

Load Test
8 cores & 32 GB

QueryLoad

Fig. 5 Testing environment architecture

10

single node) to avoid increasing the size of the clus-

ter nodes even more .

The load was generated using wrk2 on the load test

machine, targeting an ASP.NET Core application

running on the web server which queries the data-

base backend. (See Fig. 5)

The code for the web applications as well as the load

generation scripts are available at: https://github.com/

ravendb/kr-benchmark-scripts/tree/mar-2021

The Data Model
You can see a sample document in Listing 1.

The text field in Listing 1 contains the actual high-

lighted text. The other fields in the document include

the book and the starting location for the highlight.

The ID of the document is composed of the following

parts “highlights/{userId}-{ebookId}/

{highlightId}”. The reason for this document

id setup is to allow us to perform the most common

queries by user and by user and book, using a simple

prefix search on the document ID.

On Couchbase, all the data was sharded between

each of the nodes, so each one of the servers held

about one third for the data, or about 450 million

documents. All the documents were held in a single

bucket.

On RavenDB, replication between the nodes was

used. The end result is that each node has a copy of

the entire dataset (1.35 billion documents). As the

full data set is available on all the nodes, requests are

load balanced among nodes in the cluster.

The Queries
Both queries tested involved requesting the first page

of highlights for a particular user or a particular user

and book.

On RavenDB, for querying the document ID by prefix,

the analysis team focused on two ways to query the

data (See Listing 2 and Listing 3).

{

	 “text”: “The squabs are ready for market in four weeks…”,

	 “book”: “ebooks/56717”,

	 “user”: “users/5101859”,

	 “start”: 17665,

	 “at”: “2011-10-16T15:49:15.1660000Z”,

	 “@metadata”: {

		 “@id”: “highlights/users5101859-ebooks/56717/00002180997826-A”,

	 }

}

Listing 1. An example of a Highlight document

11

Couchbase vs RavenDB Performance at Rakuten Kobo

https://github.com/ravendb/kr-benchmark-scripts/tree/mar-2021
https://github.com/ravendb/kr-benchmark-scripts/tree/mar-2021

from Highlights

where user = $userid

limit 10

Listing 2. RavenDB - User's highlights query

from Highlights

where startsWith('id()', $prefix)

limit 10

Listing 3. RavenDB - User's highlights for a specific book
using prefix query

The first allows us to perform an exact search over

the Highlights collection and the second performs a

prefix search on the document IDs, taking advantage

of the nature of the document IDs used.

Given that the id of the document has the form:

"highlights/{user}-{ebook}/" (a common

pattern used in RavenDB and other NoSQL data-

bases), we are able to get a record by user and book

using just a simple prefix query.

This distinction forces RavenDB to access the data in

2 different ways. The prefix query retrieves the data

directly from the storage, while the exact search, the

first query, is forced to pass through the indexing

engine.

While the exact search query can be engineered to

avoid using the indexing mechanism, for better

performance in a production system, it is defined

here this way for the purpose of these tests.

For Couchbase we used matching queries (See Listing

4 and Listing 5).

select raw a from Library a

where a.`@metadata`.`@collection`

	 = 'Highlights' and a.`user` = ?

limit 10

Listing 4. Couchbase - User's highlights query

select raw a from Library a

where a.`@metadata`.`@collection`

	 = 'Highlights' and a.`user` = ?

	 and a.book = ?

limit 10

Listing 5. Couchbase - User's highlights for a specific
book query

All queries were parameterized using the client API.

We also implemented the second query using a prefix

search on the ID for Couchbase (See Listing 6).

select raw a from Library

where META().id like

	 'highlights/users/51018-ebooks/567/%'

limit 10

Listing 6. Couchbase - User's highlights for a specific book
using prefix query

A primary index was put in place to do an

efficient prefix search on document ids as

explicitly referenced in the documentation. With the

recommended method we observed very high CPU

spikes (80%+), very high latencies and timeouts at

just a hundred concurrent requests.

12

https://blog.couchbase.com/primary-uses-for-couchbase-primary-index/

Indexing
Both RavenDB and Couchbase have asynchronous

indexing processes. We let the indexing task complete

and run all the queries without any contending

outstanding writes.

RavenDB allows you to either define indexes explic-

itly or let the database engine figure out on its own

what fields are of interest. RavenDB will create

automatic indexes to cover those interesting fields

and maintain such indexes automatically. For the

purpose of this test, the user field on the Highlights

collection was indexed explicitly as this is the recom-

mended practice for large production databases.

For Couchbase, we defined two GSI indexes on the

Highlights collection. One to cover the user and book

fields, and one primary for the primary key that

remained unused. In the current Rakuten Kobo’s

prototype implementation, views were used for this

purpose but under the tests conditions their current

implementation showcased higher query laten-

cies. Therefore, we selected GSI indexing and N1QL

queries to compare against.

Testing
The main driver for the next gen infrastructure

is to prioritize responsiveness under load spikes

than raw throughput. The key metric selected was

latency of requests. Each test simulates a load spike

over a period of three minutes, ensuring the cluster

is stressed enough while background operations,

garbage collections and maintenance/cleanup

continue to be executed.

The tests were run with the wrk2 tool with 128

connections across 8 threads. The benchmark scripts

as well as the web application that talk to the data-

base can be found at: https://github.com/ravendb/

kr-benchmark-scripts/tree/mar-2021

Service Level Agreements are usually expressed in

the percentage of requests that must complete under

a specific latency goal; thus, these are the most

interesting numbers when you need to select your

database.

At Rakuten Kobo the user experience is of paramount

importance. After understanding the requirements

we focused on the 95-percentile and 99-percentile

which are the most likely to generate timeouts at the

clients and impact user experience.

For the purposes of this study, we agreed before

starting that the acceptable maximum latency was

200ms.

Users and Books
Highlights Queries

The Users’ Highlights query was tested on both

databases in increments until the 200ms threshold

was reached on the reference cluster (3x 32 cores

with 128 GB of RAM). As shown in the latency distri-

bution, Couchbase arrived at the 200ms threshold

in the 20-percentile at 250 requests/sec - failing

the test in the first run. RavenDB could handle up to

15,000 requests/sec before reaching the predefined

threshold (See Fig. 6).

Of those 15,000 requests per second, 93% of the

requests were served within 200 ms and over 85%

were below 50ms. At 5,000 requests per second the

13

Couchbase vs RavenDB Performance at Rakuten Kobo

https://github.com/ravendb/kr-benchmark-scripts/tree/mar-2021
https://github.com/ravendb/kr-benchmark-scripts/tree/mar-2021

excess capacity enabled 97% of the requests to be

served under 20ms.

In the User's highlights query case, we are testing

the performance of using an index to find results,

and then fetching them from the document store

for both RavenDB and Couchbase. If you design your

document id structure, you can issue some queries

directly on the document store, bypassing the need

for an index entirely, which is exactly what the

Books’ Highlights query is doing for RavenDB (See

Fig. 7). We attempted to do the same for Couchbase,

but found that the CPU cost was immense and the

cluster was unable to maintain even a rate of 100

requests per second with key prefix queries.

The Books’ Highlights query has a more stable

behavior with RavenDB being able to handle effort-

lessly up to 99.9% of the requests below 50ms on

the reference cluster setup. Being able to query the

storage directly without using the indexing engine

ensures the throughput is not taxing the system. At

the next increment on this test (30,000 requests/

sec) the client machine becomes the bottleneck

and measurements become unreliable after the

99-percentile and would require a distributed load

infrastructure that was not available to the analysis

team in time of the creation of this report.

These numbers were obtained with equal processing

hardware: 3 nodes at 32 cores and 128 GB per node.

Rakuten Kobo concluded that this scenario could not

be satisfied with Couchbase as the provider.

Accessing the Data
by Key

As a reference to understand the impact access to IO

has, we decided to test both databases in two differ-

ent scenarios. In the Cold-Start scenario, the test

has to be done after rebooting the system to ensure

the Operating System buffers do not contain pages

belonging to the data and therefore every request

requires to hit the disk.

200

400

600

800

1,000

1,200
20

%
40

%
50

%

75
%

85
%

90
%

95
%

99
%

99
.5

%

99
.9

%

99
.9

5%

99
.9

9%

99
.9

99
%

Couchbase 0.25k req/sec RavenDB 0.5k req/sec RavenDB 1k req/sec

RavenDB 5k req/sec RavenDB 15k req/sec

Couchbase 0.25k req/sec
200ms @ 20-percentile

RavenDB 15k req/sec
200ms @ 93.75-percentile

RavenDB 5k req/sec
200ms @ 98.75-percentile

RavenDB 1k req/sec
200ms @ 99.98-percentile

RavenDB 0.5k req/sec
71ms 100-percentile

Latency (ms)

Percentiles

Fig. 6 Latency distribution in milliseconds for the highlights for user query (lower is better)

14

In the second scenario, a warming run process was

executed on RavenDB before the actual test to ensure

a reasonable preloading of the entire database into

memory to mimic Couchbase startup preloading keys

and values into memory. With Couchbase, a node

will not go online until it loads all the document keys

from the disk. Every time a node goes up it needs to

read 450 million keys and values before being able

to serve requests. The forced preloading process

impacts startup time and availability.

The access latency was tested until the client became

the bottleneck. We concluded that this is the scenario

where Couchbase shines. Having both the data and

keys in-memory pays off in diminished latency.

When used as a persistent caching solution the

resulting latencies are very stable across the board.

When in Cold-start, Couchbase was not available to

serve requests for ~13 minutes and therefore it was

not included in the analysis. More on this in the oper-

ational concerns section. Conversely, RavenDB was

available for servicing requests after a few seconds

of starting the server at a reduced performance level.

Even for the cold start scenario, RavenDB was able

to handle over 95% of the requests in the 200ms

allotted time, and as it was able to move things to

memory, performance improved steadily over time.

We asked specifically about the impact on the oper-

ations, Trevor gladly gave us a very detailed expla-

nation of what this means for Rakuten Kobo, the key

takeaway was:

"When we switch primary nodes for
RavenDB, we notice performance drop for
a while. Took us by surprise a few times,
but wasn’t any major concern."

Trevor, Rakuten Kobo CTO

On the other hand, when running the same scenario

with Couchbase, the node is entirely unavailable

while it is reading from the disk. In the case of failure,

this means that RavenDB will be back and running

within seconds, even if it needs some ramp up time.

Couchbase will take many minutes to start fielding

any requests. From the Operations team point of

0

200

400

600

800

1000

1200

Couchbase 0.25k req/sec RavenDB 0.5k req/sec RavenDB 1k req/sec

RavenDB 5k req/sec RavenDB 15k req/sec

Couchbase 0.25k req/sec
200ms @ 30-percentile

RavenDB 15k req/sec
200ms @ 99.98-percentile

20
%

40
%

50
%

75
%

85
%

90
%

95
%

99
%

99
.5

%

99
.9

%

99
.9

5%

99
.9

9%

99
.9

99
%

RavenDB 0.5k req/sec
10ms @ 99.99-percentile

RavenDB 5k req/sec
35ms @ 99.99-percentile

RavenDB 1k req/sec
17ms @ 99.99-percentile

Fig. 7 Latency distribution in milliseconds for books query (lower is better)

15

Couchbase vs RavenDB Performance at Rakuten Kobo

view, you can imagine which situation is preferred.

We’ll discuss this more in the Operational Concerns

section.

During the Cold-start test, there were no outstand-

ing writes happening, so Couchbase behaves as an

in-memory cache. Conversely, RavenDB doesn't

have a facility to preload the entire database in

memory and will do the loading on-demand in the

same way it would handle databases several orders

of magnitude larger than the available memory per

node. (See Fig. 8)

When warmup is included, up until the 99.9-percen-

tile with 30k request/sec, the results are almost indis-

tinguishable. At those levels, a single request that has

to hit the disk would negatively impact the results.

Observations of the RavenDB CPU consumption

never moved higher than 50% on any of the nodes

of the clusters during the test time, and the average

time for all requests was 4.52±3.24 ms (4.52ms as the

mean and 3.24ms as the variance). As the client starts

to become the bottleneck, we couldn’t increase the

load higher to distinguish if that is a measurement

artifact by a few hits to the disk, or the actual behav-

ior at that load point.

In the otherwise stable behavior at 10k requests/sec

it can be seen that the latency at those levels where

both systems have excess capacity is excellent. All

of the requests were able to be served at less than

60ms with a staggering low latency of 6ms for the

99-percentile for both solutions. (See Fig. 9)

Discussion
Both solutions performed admirably when accessing

by key for less than 30k requests/sec at almost the

same price point. Couchbase has a slight advantage

due to keeping all the data in memory, but this comes

at a higher cost of vastly increased startup time as

well as much higher disk usage. Beyond 30k requests/

sec the conclusion is that a deeper investigation and

an advanced distributed testing infrastructure would

be needed to be done to rule out measurement arti-

facts.

Couchbase 30k req/sec
72ms @ 100-percentile

0

100

200

300

400

500

600

Couchbase 10k req/sec RavenDB 10k req/sec RavenDB 30k req/secCouchbase 30k req/sec

RavenDB 30k req/sec
200ms @ 99.97-percentile RavenDB 10k req/sec

56ms @ 100-percentile

Couchbase 10k req/sec
50ms @ 100-percentile

20
%

40
%

50
%

75
%

85
%

90
%

95
%

99
%

99
.5

%

99
.9

%

99
.9

5%

99
.9

9%

99
.9

99
%

Fig. 8 Latency distribution in milliseconds for get-by-id query (lower is better)

16

When indexing is required, the conclusion is that

an alternative solution like Elasticsearch would be

required when using Couchbase.

Under the recommendation of the RavenDB

Performance Team, noticing the extra capacity on

the 10k request/sec scenario, a few more tests were

run with downsized hardware to understand scaling

costs.

Because of how Couchbase is designed, the minimum

cloud hardware required to handle the benchmark on

AWS is a cluster of 3 nodes of m5a.8xlarge instances

(32 cores and 128 GB of RAM) with the data sharded

among the nodes, without replication. That isn’t a

viable production configuration, of course.

Looking at the sizing guide for Couchbase, and taking

into account that a production environment cannot

run with a single copy of the data, we estimate that a

production cluster to serve this scenario would take

5 servers with 192 GB each. This assumes a working

set of 20% of the data to reside in memory and three

replicas for each document.

On premise, adding more RAM has a rather marginal

cost, but on the cloud the relevant instance for the

requirement is m5a.12xlarge, which comes at a 48%

premium. A cluster of 5 such machines would have a

total of 240 cores and 960 GB of RAM and a total disk

usage of 30 TB.

The recommended setup for production would be

bigger than the one showcased here and it would cost

significantly more as well. When selecting a database

solution, one does not look simply at the perfor-

mance numbers, but also at what resources it takes

to achieve them.

This benchmark puts a very high bar for passing.

Handling thousands of queries per second with low

latency is a load very few applications need to face.

Therefore, we decided to see how far we could step

down the hardware requirements for RavenDB and

what would be the acceptable performance at each

price point.

For RavenDB we selected the default setup for the

cluster as reference which matches Couchbase

performance to compare against: m5a.xlarge (4

0

10

20

30

40

50

60

Couchbase 10k req/sec RavenDB 10k req/sec

20
%

40
%

50
%

75
%

85
%

90
%

95
%

99
%

99
.5

%

99
.9

%

99
.9

5%

99
.9

9%

99
.9

99
%

RavenDB 10k req/sec
20ms @ 99.60-percentile

Couchbase 10k req/sec
20ms @ 99.64-percentile

Fig. 9 Latency distribution in milliseconds for get-by-id query (lower is better)

17

Couchbase vs RavenDB Performance at Rakuten Kobo

https://docs.couchbase.com/server/current/install/sizing-general.html

cores, 16GB) and a Graviton ARM m6g.large (2 cores,

8GB). (See Fig. 10)

RavenDB is able to handle gracefully 10,000 requests

per second at the 99-percentile with a latency below

200ms on a 2TB database using an ARM Graviton

processor (2 cores, 8 GB of RAM) at an annualized

cost of $1,185 + storage costs for the entire cluster.

For more performance conscious applications at the

99.9-percentile, a cluster composed of three m5a.

xlarge nodes is able to serve 10,000 requests per

second with latencies below 110ms at an annualized

cost of $2,658 + storage costs. The reference cluster

would cost $24,699 per year without including stor-

age cost at comparable latency.

For the cases of the Books and Users highlight

queries, comparisons were performed against a

RavenDB reference cluster. Couchbase was not able

to complete a test run at 250 requests per second

without timeouts.

If the solution requires the usage of queries, there is

not enough spare capacity at the 1,000 requests per

second to be able to downsize the environment up

to 2 cores Graviton range (See Fig. 11). However, as

shown in the mid size cluster, it is possible to sustain

up to 1,000 requests per second within the threshold

even using queries. The memory size and limited core

count of the smallest Graviton cluster cannot sustain

1k request/sec.

The absolute downsizing limit for half the load at

500 requests per second was found to be even lower

than the ARM system. The system which was used for

comparison in this report was a single Raspberry PI

4 with 4GB and a USB connected SSD. At that refer-

ence load, it is able to sustain at the 99-percentile a

latency well under 50ms as shown below. (See Fig. 12)

0

200

400

600

800

1000

1200

1400

1600

30
%

55
%

70
%

80
%

90
%

95
%

99
%

99
.5

%

99
.9

%

99
.9

5%

99
.9

9%

99
.9

99
%

Couchbase (32 cores, 128 Gb) RavenDB (32 cores, 128 Gb)

RavenDB (4 cores, 16Gb) RavenDB (ARM, 2 cores, 8Gb)

RavenDB (ARM, 2 cores, 8Gb)
200ms @ 96.94-percentile

RavenDB (4 cores, 16Gb)
199ms @ 100-percentile

RavenDB (32 cores, 128 Gb)
56ms @ 100-percentile

Couchbase (32 cores, 128 Gb)
50ms @ 100-percentile

Fig. 10 Latency distribution in milliseconds at 10k requests/sec for get-by-id query (lower is better)

18

Couchbase cluster of three nodes with a
total of 96 cores and 384 GB RAM was
unable to sustain 250 queries per second.
A single RavenDB node running on a
Raspberry PI 4 with 4 cores and 4 GB
of RAM was able to answer 500 queries
/ second in under 200ms in the 99
percentile.

If the system can be engineered to ensure that

requests are dominated by high performance prefix

queries, even at the smallest cluster composed with

nodes of 2 cores with 8GB of memory, the query-

ing system can sustain 10,000 requests per second

within the 200ms threshold for the 99-percentile.

(See Fig. 13)

0

200

400

600

800

1000

32 cores, 128 Gb 4 cores, 16Gb ARM, 2 cores, 8Gb

30
%

55
%

70
%

80
%

90
%

95
%

99
%

99
.5

%

99
.9

%

99
.9

5%

99
.9

9%

99
.9

99
%

RavenDB (4 cores, 16Gb)
166ms @ 100-percentile

RavenDB (32 cores, 128 Gb)
42ms @ 100-percentile

RavenDB (ARM, 2 cores, 8Gb)
200ms @ 60-percentile

Fig. 11 RavenDB latency distribution in milliseconds at 1k requests/sec for users query (lower is better)

0

200

400

600

800

1000

Raspberry PI 4, 4Gb ARM, 2 cores, 8Gb

30
%

55
%

70
%

80
%

90
%

95
%

99
%

99
.5

%

99
.9

%

99
.9

5%

99
.9

9%

99
.9

99
%

ARM, 2 cores, 8Gb
133ms @ 100-percentile

Raspberry PI 4, 4Gb
200ms @ 99.53-percentile

Fig. 12 RavenDB latency distribution in milliseconds at 500 requests/sec for users query (lower is better)

19

Couchbase vs RavenDB Performance at Rakuten Kobo

Operational
Considerations

Reliability is key for Rakuten Kobo operations.

"Resilience and fast recovery isn't just
about surviving a node crashing. They are
essential for good hygiene too"

Trevor, Rakuten Kobo CTO

Therefore, we evaluated other scenarios of interest

in relationship to the performance behavior under

duress. Failure recovery is one of the most common

situations where under a bad situation we may be

adding more stress.

For high availability, the deployment of a cluster is

a must. When some of those nodes fail, the cluster

needs to handle that and recover. Both systems

handle such failures automatically and transparently

by default, however there are important differences

between their behavior.

In order to understand what to focus on, we inter-

viewed key people at Rakuten Kobo about the key

pain points on their current deployment.

A node failure in Couchbase will trigger an attempt to

rebalance the data between the surviving servers. In

the case of transient errors, this can lead to spikes in

database loads at the moment of the fault. Faults will

cause overhead on top of the reduction in the capacity

caused by a fault of a node in the cluster. Therefore, it

is expected that Couchbase nodes should be overpro-

visioned with extra idle compute capacity on standby

in case a node goes down and self-healing behavior

is triggered.

RavenDB systems are based on a cooperative process

between the clients and the servers. A failed server

does not trigger any special action on the cluster,

the clients are already aware of the succession node

list and will failover to the next server immediately.

Transient errors will simply cause a redirection of

0

200

400

600

800

1000

32 cores, 128 Gb 4 cores, 16Gb ARM, 2 cores, 8Gb

30
%

55
%

70
%

80
%

90
%

95
%

99
%

99
.5

%

99
.9

%

99
.9

5%

99
.9

9%

99
.9

99
%

ARM, 2 cores, 8Gb
200ms @ 99.21-percentile

4 cores, 16Gb
21.6ms @ 100-percentile

32 cores, 128 Gb
21.3ms @ 100-percentile

Fig. 13 RavenDB latency distribution in milliseconds at 10k requests/sec for books query (lower is better)

20

traffic into other nodes without the end application

noticing that something happened beyond a few

requests that may be slower than usual.

Behind the scenes, RavenDB will monitor the state

of the node and its recovery. Experience has shown

that it is rare to completely lose a node, so RavenDB

defaults to ensuring the liveliness of the system and

waiting for the node to return.

RavenDB Enterprise edition is able to automatically

ensure the appropriate number of replicas for the

data on the failed node is maintained. That is useful

if you expect a node to go down and stay down for a

long period of time. That requires an extended outage

to trigger, in the order of minutes. In the meantime,

the cluster and the clients will automatically adjust

the load, without the need for expensive operations.

These rebalancing operations are only triggered after

a sensible time has passed in order to avoid initiating

maintenance costs after server restarts or network

glitches. All maintenance operations are performed

on the cluster’s spare capacity, and the cluster will

always prioritize users’ requests over background

operations.

A RavenDB node failure is not treated as a priority

operation to allow DevOps to handle seamlessly

rolling updates for the clusters. Updating the cluster

is a routine operation where nodes are taken down

one at a time in order for DevOps teams to perform

maintenance operations and then rejoin the cluster.

RavenDB expects nodes to fail and handles that

gracefully and seamlessly. By making the failure of a

node a non-event, RavenDB provides the Operations

teams with the ability to treat the nodes as hot spares.

You can take one down at any time, for any reason,

and nothing major will occur.

Couchbase behaves in a similar way, in theory. A

node is allowed some downtime before automatic

steps are taken to rebalance the cluster. A confluence

of design choices may allow those small failures to

have cascading impact. During startup, it will need

to read the entire metadata library on the server into

memory. With big databases like the one tested here,

it ranged from 10 to 20 minutes on an io2 drive with

4,000 provisioned IOPS to be able to serve requests.

"We didn't upgrade the Couchbase version
for years because we were fearful of taking
a node down. Additionally, if we needed to
increase the capacity of the cluster we had
to add a node. And that would also cause a
rebalance and outage."

Trevor, Rakuten Kobo CTO

Even after a Couchbase node is up, it takes even

longer for indexes to become available. After a node

failure, we observed that even after the node came

back up and loaded the document’s data, the index

remained in a warmup state for a long time. In one

scenario, a single index was still in the warmup stage

after 30 minutes from the node restarting, during

which time no queries could be served by those

indexes.

There are many reasons why the Operations team

may want to restart a node. Patching the database

software or the underlying operating system is prob-

ably one of the most common reasons. However, if

such operations will cause a rebalance, with its asso-

ciated costs, it will be avoided at almost any cost.

Certain operations in Couchbase, like changing the

hostname of the node, will require the node to be

removed from the cluster and then rejoined, inducing

a rebalancing operation. At the sizes tested, a rebal-

ance operation takes 40 hours.

21

Couchbase vs RavenDB Performance at Rakuten Kobo

On the other hand, RavenDB uses a write ahead log.

The only work a restarting or rejoining node needs to

do on startup is to replay the unregistered transac-

tions, which is independent of the database size. If no

writes had happened between leaving and rejoining

the cluster, no work needs to be done. And only the

new writes will be replicated when the node joins.

After some time of Rakuten Kobo using RavenDB in

production we came back to this particular question

as it was of particular importance for our team.

“We're able to keep up with every minor
release. Shutting down a node, upgrading
the RavenDB version and restarting it is
a non-event and one that takes under a
minute. That's unthinkable with what
happens with Couchbase and its auto-
rebalancing.”

Trevor, Rakuten Kobo CTO

The Bottom Line
In every large-scale deployment, efficient software

generates benefits at the bottom line. At the same

performance level the current hardware budget can

be reallocated to new services and other uses when

the next gen infrastructure is rolled into production.

The Couchbase reference cluster is the bare minimum

for the database size with no replication and no data

redundancy. We tried to downscale the cluster after

ingestion to 16 cores and 64 GB RAM per node, but

the cluster suffered repeated failures due to memory

exhaustion.

Using the guidance from Couchbase’s documentation,

we estimate that this workload requires (at a mini-

mum) a 5 nodes with 192GB RAM and a replication

factor of 3. We selected the m5a.12xlarge AWS

instance with 48 cores and 192GB RAM as the rele-

vant instance type for our computations.

The following chart (See Fig. 14) summarizes the

annual cost of ownership at the different sustained

load requirements between the competing solutions

where both can successfully finish the scenario.

The Budget Cluster specification is designed

around being able to trade off cost for latency at the

95-percentile level, while the High-Performance

Cluster will try to match or surpass the capability at

the 99.9-percentile level.

The following numbers show just how much hard-

ware you’ll need to use to meet your performance

goals with Couchbase and RavenDB.

It’s important to note that Couchbase according to

our tests is unable to actually handle queries with any

real load associated with them. In our estimation, in

addition to the Couchbase cluster, you’ll need to also

run a separate system for queries. For example, using

Elasticsearch to query the data, and then loading the

data from Couchbase.

RavenDB,on the other hand, is able to fill
both roles, and at a much reduced price
tag.

22

https://docs.couchbase.com/server/current/install/sizing-general.html

BASELINE
CLUSTER

BUDGET
CLUSTER

HIGH
PERFORMANCE

CLUSTER
BASELINE
CLUSTER

BUDGET
CLUSTER

HIGH
PERFORMANCE

CLUSTER

$150,000

$100,000

$50,000

$0

Up to 10,000 requests / s Up to 30,000 requests / s

Up to 10,000 requests / s Up to 30,000 requests / s

92%
COST
SAVING

80%
COST
SAVING 89%

COST
SAVING

76%
COST
SAVING

ANNUAL COST

BUDGET CLUSTER

95-percentile
performance match

BASELINE CLUSTER
240 cores, 960 GB, 30 TB io2
5 servers - 48 cores, 192 GB

$140,332.80 / year

6 cores, 24GB, 2Tb gp3
3 servers - 2 ARM cores, 8 GB

$10,931.16 / year

HIGH PERFORMANCE
CLUSTER

99.9-percentile
performance match

24 cores, 96 GB, 2Tb io2
3 servers - 8 cores, 32 GB

$28,597.92 / year

96 cores, 384 GB, 2Tb io2
3 servers - 32 cores, 128 GB

$47,122.92 / year

24 cores, 96GB, 2Tb gp3
3 servers - 8 cores, 32 GB

$15,920.16 / year

Fig. 14 Cluster costs at various workloads RavenDB and Couchbase.
Achieving the same 99.99-percentile latencies

23

Couchbase vs RavenDB Performance at Rakuten Kobo

About RavenDB
RavenDB is a pioneer in NoSQL database technol-

ogy with over 2 million downloads and thousands

of customers from startups to Fortune 100 Large

Enterprises.

Mentioned in both Gartner and Forrester research,

over 1,000 businesses use RavenDB for IoT, Big Data,

Microservices Architecture, fast performance, a

distributed data network, and everything you need to

support a modern application stack for today’s user.

For more information please visit:

ravendb.net

Contact us at:

info@ravendb.net

Documentation

https://ravendb.net/learn/docs-guide

Use Cases

https://ravendb.net/news/use-cases

Free Online Training

https://ravendb.net/learn/bootcamp

Webinars

https://ravendb.net/learn/webinars

RavenDB Download

https://ravendb.net/download

RavenDB Cloud Database as a Service

https://cloud.ravendb.net/

24

http://ravendb.net
mailto:mailto:info%40ravendb.net?subject=
https://ravendb.net/learn/docs-guide
https://ravendb.net/news/use-cases
https://ravendb.net/learn/bootcamp
https://ravendb.net/learn/webinars
https://ravendb.net/download

Houston • Buenos Aires • Hadera • Toruń

US Number: 1-817-886-2916

info@ravendb.net

© Hibernating Rhinos, Ltd. Al l r ights reserved.

	Couchbase vs RavenDB Performance at Rakuten Kobo
	Key Findings
	The Dataset
	Loading the Data
	Disk Usage
	The Test Environment
	Environment Configuration
	The Environment
	The Data Model
	The Queries
	Indexing
	Testing
	Users and Books Highlights Queries.
	Accessing the Data by Key
	Discussion
	Operational Considerations
	About RavenDB

