
Comparing
RavenDB & MongoDB

Our commitment to simplification of experience
without any trade-offs matters
and makes a difference

Oren Eini

Contents

Introduction to RavenDB and MongoDB ���2

Maintaining Data Integrity ��4

Querying & Aggregating Data ��5

Performance ���11

Scaling Out Your Database �� 12

Features ��14

Integration With Your Organization's Current Systems ��� 15

Caching and Concurrency ���16

Data Security �� 17

Getting Started ��19

About RavenDB �� 20

1

RavenDB vs MongoDB

RavenDB vs MongoDB

One question that we often hear from prospec-

tive clients is 'How does RavenDB stack up against

MongoDB?' To provide a comprehensive answer,

we've organized this white paper and broken it down

into topics of interest�

If you are interested in third-party empirical

performance data, Rakuten Kobo CTO Trevor Hunter

has shared a video detailing their extensive tests on

RavenDB, MongoDB, and Couchbase as part of their

NoSQL data platform selection process�

Their findings reveal (skip to 8:00), that while

RavenDB and MongoDB often delivered similar

performance levels, RavenDB consistently used

fewer machine resources and offered instant server

failover (zero downtime), while MongoDB took a few

minutes�

Final verdict spoiler? Ultimately, Rakuten Kobo

chose RavenDB for its unique capabilities�

This white paper, however, rather than focusing

on performance metrics, aims to shed light on the

distinct functionalities of the two veteran NoSQL

data platforms, RavenDB and MongoDB, and doesn't

focus on performance metrics�

Our goal is to provide you with a valid compari-

son that covers the key features, capabilities and

differentiators between the platforms.

Introduction to
RavenDB and MongoDB

RavenDB is an open-source, NoSQL, high-per-

formance, multi-model distributed data platform

specializing in online transaction processing (OLTP)�

It has been fully transactional (ACID) since its first

launch in 2009�

2

https://www.youtube.com/watch?v=e9spWARf8Tc
https://www.youtube.com/watch?v=e9spWARf8Tc
https://ayende.com/blog/185697-A/modeling-data-using-a-multi-model-database

Some key advantages:

• Peace of mind - Consistent zero downtime for

clients when a server goes down thanks to high

availability in a multi-master cluster

• Safe-by-default

• Industry-standard security, including

encryption at rest and in transit, is relatively

simple to apply (automatic and HIPAA certi-

fied on RavenDB Cloud)

• Default ACID transactions protect data

integrity

• Default settings prevent hardware overload

• Built-in ongoing backups to various storage

platforms

• Automatic indexes in RavenDB adjust to your

query behavior and ensure consistently high

performance, without your DBAs having to spend

time and effort on manual optimization

• Out-of-the-box high performance (150K

writes/1M reads per second on commodity hard-

ware) means you can focus on your app instead of

optimizing the database

• Minimal administration and need for tech

support saves lots of developer time

• Unstructured data from multiple sources is effi-

ciently imported and automatically organized as

aggregated

• Rich native feature set - RavenDB comes with a

comprehensive native feature set, minimizing the

reliance on third-party plugins and eliminating

the need for other databases�

• You can code intelligent indexes to run compu-

tations, including AI/ML models, to be performed

in the background as data changes so that queries

have turbo-charged speed

• Integrates smoothly with SQL and OLAP as well

as other analytics tools such as Kafka, RabbitMQ,

PowerBI, Grafana, Elasticsearch, via various ETL

& replication options

• Self-optimization according to system usage and

hardware

• Ideal for edge deployments ~20K requests/

second on Raspberry Pi or ARM64

These features add up to a database system trusted

and employed by a global client base, including

Fortune100 companies spanning several continents�

RavenDB is deployed in various systems, both

on-prem and cloud, using the RavenDB Cloud DBaaS

ManagedService on AWS, Azure, or Google Cloud

hardware� Distributions vary from simple, single-

server deployments to global systems of geo-distrib-

uted clusters to a major chain with over 1�5 million

instances of Point of Sale (PoS)machines deployed

worldwide�

MongoDB has been offered since 2009 as an open-

source, high-performance document database�

MongoDB takes its name from "humongous," refer-

ring to its intended usage for storing large data� It

is used in applications ranging from simple TO-DO

apps to critical business systems and is widely used

and known in then on-relational database commu-

nity� MongoDB spends a lot of money branding itself

as the database that solves the object-relational

3

RavenDB vs MongoDB

impedance mismatch problem, though every docu-

ment database does this as well�

MongoDB began offering multi-document ACID

transactions in 2018�

MongoDB integrates with Vercel and Netlify as

application platforms� Several 3rd party plugins and

MongoDB's "Connector" enable MongoDB to inte-

grate with other systems�

Maintaining Data
Integrity

How well does each database preserve data integrity,

preventing data corruption or loss?

RavenDB is a fully transactional NoSQL database� It

ensures data integrity with default ACID transactions

throughout and across your database cluster so your

data is safe� You can modify multiple documents in

a single transaction and be assured that all changes

will be persisted to disk or all of them will be rolled

back for another attempt�

RavenDB can ensure that your transaction bound-

aries will be maintained when the data is repli-

cated among the different nodes in the cluster�

Transactions can be set to be cluster-wide for

stronger consistency, though this mode is more

time-consuming due to the need for Raft consensus�

RavenDB's default transaction mode is on a single

preferred node, which is then replicated asynchro-

nously and atomically to other nodes in the database

group of nodes�

RavenDB uses a multi-master model for high

availability and instant, seamless failover if your

preferred node goes down� In this case, all tasks

handled by that server are instantly transferred to

other nodes� This means your application(s) will

have zero downtime with RavenDB, even if a server

crashes or the network is disrupted�

RavenDB can integrate with a wide range of tech-

nologies, including most relational databases, OLAP

solutions,Kafka, RabbitMQ, PowerBI, Grafana, and

Elasticsearch� This integration simplifies both

migrating to RavenDB as well as using hybrid

solutions and greatly reduces the cost of data flow,

and enhances cohesiveness in your systems and

applications�

With RavenDB, you can maintain ACIDity throughout

your current data architecture while enjoying the

ability to scale up or out quickly� You can enjoy the

speed, agility, and performance of a document data-

base solution that queries rapidly via indexes while

keeping the data integrity guarantees that many

other NoSQL databases don't offer� RavenDB has

been transactional from the very start, continually

enhancing performance without compromising on

ACID assurance, so you don't have to trade perfor-

mance for data integrity�

MongoDB became a transactional database in 2018,

announcing support for transactions covering

multiple documents after a decade of supporting

atomic operations on a single document only� Their

challenge will be to improve upon their new ACID

guarantees without sacrificing performance.

Multi-document ACID transactions with MongoDB

come with performance costs� MongoDB transac-

tions have to be set explicitly to ensure data integrity�

Even to this day, MongoDB documentation calls out

that transactions are more expensive than single

document modifications and recommends changing

your data model to avoid them if possible�

4

MongoDB also maintains high availability with

trivial client downtime when the primary node goes

down�

Querying &
Aggregating Data

How fast can you query data?

How do you get aggregation results?

RavenDB is a leader in running complex queries,

showcasing unparalleled efficiency� Typically,

complex SQL queries that require multiple joins and

take about 3000ms consistently require less than 30

ms for RavenDB to execute�

For one complex query, RavenDB is 100x more effi-

cient than SQL� Duplicating that for a page that lists

30product options, RavenDB is 3000x more efficient

than SQL in complex queries� How does RavenDB

achieve this level of efficiency?

All queries made with RavenDB use an intelligent

index� You never have to fear a full table scan or an

unoptimized query, grinding your business to a

halt� When you make a query, the query optimizer

will detect whether a query can be answered with

an existing index and will modify and optimize the

index definition on the fly as needed.

If there is no suitable index, RavenDB will automat-

ically create one and remove it if it isn't used for a

specified time (30 minutes till idle and 72 hours till

removal by default)�

As you make more queries, the query optimizer

learns and adapts your indexes to match your needs�

RavenDB's auto-indexes free you from the need to

predict and write indexes for every possible query

scenario�

Latency is obliterated as query results come faster

because RavenDB is not required to comb and process

your data during every query to return results�

Once an index is set up, query times drop by over

99�9%, using precomputed results that are kept

current for you behind the scenes as the data changes�

This not only saves your users time, but in the cloud,

it saves you money�

Your database administrator doesn't need to

constantly monitor and adjust the database indexes

to achieve outstanding performance� RavenDB

already does that for you with its automatic indexes�

For production usage, you can let RavenDB gener-

ate the optimal set of indexes you need to run your

application completely automatically�

You can also apply the same learnings from a test

or QA environment to production, allowing the

RavenDB cluster to apply learned behavior about

the next version of your system as part of your

deployment�

There's no need to worry if you didn't explicitly set

up indexes for aggregation and reports� When an

aggregation query is sent to RavenDB, the query

optimizer will create an (aggregation) auto index to

answer it if one doesn't exist already�

Aggregation queries in RavenDB are inexpensive and

require almost no work from developers or admins

to get things working� As a native part of RavenDB,

you do not need to maintain third-party components

to perform aggregates� They happen automatically,

behind the scenes, to keep the data in your queries

fresh�

5

RavenDB vs MongoDB

https://ravendb.net/articles/3000x-faster-database-transactions-for-the-worlds-largest-medical-supplier
https://ravendb.net/articles/3000x-faster-database-transactions-for-the-worlds-largest-medical-supplier

The nature of indexing in RavenDB means that

RavenDB doesn't need to create more and more

indexes as you query various aspects of your docu-

ments� Instead, the database is able to merge rele-

vant indexes and answer multiple types of queries

using a single index, greatly reducing the amount of

work the database needs to do behind the scenes to

answer your queries quickly�

On the other hand, developers can explicitly define

static indexes that can make complex computations

on your data whenever it is modified. The indexes

then provide the pre-computed data to queries so

that frequent queries don't need to do the work and

are thus much faster� This is most noticeable when

considering aggregation queries�

Unlike auto-indexes, user-defined indexes are

not removed automatically if they're not used�

The philosophy is that such indexes were created

explicitly by the developers, so they should also be

removed or edited explicitly� RavenDB has an Index

Cleanup feature that analyzes index usage and

suggests indexes that can be merged or removed to

streamline CPU work and storage used by indexes�

When your documents are updated, RavenDB will

update all the relevant indexes� Unlike most data-

bases,RavenDB does that outside of the update

transaction� This means your actual operations are

much faster since they don't need to wait for the

indexes to complete� RavenDB also takes advantage

of this behavior to optimize index updates and merge

multiple changes into a single operation�

Concurrent queries on those indexes get a choice,

either read the current state of the index (potentially

stale results) for faster dashboard rendering, show-

ing whatever information is ready to serve, or wait

until the indexes are up to date for rendering pages

like the order history�

MongoDB supports dynamic queries, but not auto-

matic indexes� MongoDB Atlas, the hosted version on

the cloud, has a feature called Index Autopilot that

can automatically build indexes out of their query

performance suggestions� MongoDB still has no way

to remove unnecessary indexes automatically�

This means that if they create indexes, but these

aren't really used, they will continue to use system

resource sunless they're explicitly removed� This can

quickly turn into system overload and thus slow the

system�

This typically results in acceptable performance

initially, with small datasets, but quickly causes

performance deterioration and system overload as

the data size grows�

This can be exceptionally costly on the cloud and

causes users to wonder why the app is so slow�

Creating indexes ahead of time resolves this issue,

but it is difficult to anticipate every future query

scenario and write an index for each one� MongoDB's

Performance Advisor is better than nothing, but it

is like taking your delivery van in for repairs after

it broke down� Wouldn't you rather have a system

that optimizes itself in real-time according to actual

usage?

Today, unless the administrator has taken steps to

define indexes ahead of time or toggle and maintain

the autopilot, queries will scan the entire database

and filter results on documents each time� If an

index isn't being used, it will continue to take system

resources unless someone cleans up�

Even with Index AutoPilot enabled on MongoDB

Atlas, indexes in MongoDB are not flexible enough

to allow a single index to cover multiple different

queries, easily leading to a great number of indexes

being created and maintained, at a performance cost�

6

Indexing in MongoDB is single-purpose� It doesn't

mean an index can only satisfy a single query� Rather,

that MongoDB indexes are optimized for specific

query patterns� Each index is built considering the

fields that are queried upon, their order in the query,

and the sort order�

Here are some examples to further
explain:

Example 1: Filtering by Author and
Date, then Sorting by Likes

db.Posts.find({ Author: $uid, Date: {

$gte: $start, $lte: $end } }).sort({

Likes: 1 })

Here, we are fetching all the posts of a particular

author written in a specified time frame and then

sorting the results based on the number of likes�

The optimal index for this query would be:

{ Author: 1, Date: 1 }

The index follows the exact order in which the fields

are queried. Author is the primary field, followed by

Date,and then finally, Likes is used for sorting (but

cannot use an index)�

Example 2: Filtering by Author and
Likes, then Sorting by Date

db.Posts.find({ Author: $uid, Likes: {

$gte: $minLikes } }).sort({ Date: 1 })

In this scenario, posts by a specific author that have

garnered a certain number of minimum likes are

retrieved� These results are then sorted based on

their publication date�

{ Author: 1, Likes: 1 }

Notice the subtle change? Even though Date and

Likes are present in both queries, we cannot have

both of them in a single index and take advantage of

that�

A reasonable question one might ask is why not have

a more generic index to satisfy both queries? The

specificity of MongoDB indexes ensures that data

retrieval is as fast as possible�

A generic index might not be as optimal because

MongoDB reads indexes from left to right� If the

index doesn't match the query pattern, some parts

of the index might be skipped, making the query less

efficient.

Understanding the nuances of MongoDB indexing is

crucial for efficient data retrieval. While MongoDB

provides flexibility, the onus is on the developers and

database administrators to design the right indexes

for their use cases� Properly indexed collections can

greatly enhance the performance of the application,

leading to a smoother user experience�

Unlike MongoDB, which often requires meticulous

crafting of indexes to match query patterns, RavenDB

can adapt its indexes to cater to a broader range of

queries� The mechanism is designed to understand

the nature of the data and optimize itself for multiple

query scenarios�

7

RavenDB vs MongoDB

Let's revisit our previous scenarios to see how RavenDB handles them:

Example 1: Filtering by Author and Date, then Sorting by Likes

from 'Posts'

where Author = $uid and Date between $start and $end

order by Likes

Example 2: Filtering by Author and Likes, then Sorting by Date

from 'Posts'

where Author = $uid and Likes => $minLikes

order by Date

RavenDB's dynamic indexing is an automatic process

where the database creates indexes on-the-fly based

on the queries it receives� As more queries are made,

RavenDB tweaks and merges these dynamic indexes,

optimizing them over time� This ensures efficient

data retrieval without the need for manual interven-

tion. In this specific scenario, RavenDB will first react

to these two queries by creating an automatic index,

and after that, the very same index will be used to

serve both queries�

The internal structure of indexes in RavenDB is far

more flexible than the one used by MongoDB, allow-

ing RavenDB to utilize a single index to efficiently

answer different queries on top of the same indexing

structure�

For aggregation support, MongoDB provides both

MapReduce queries and aggregation pipeline queries�

These are more complex than simply using a GROUP

BY statement, with MapReduce being more flexible

and the aggregation pipeline being faster�

In both cases, MongoDB must evaluate all the match-

ing documents and compute the final total� This

happens on every query, resulting in workarounds

such as spilling the results of a query to a temporary

collection and refreshing that on a routine schedule�

In such cases, you must schedule refreshing the

results during off hours and manage it manually�

Maintaining the freshness of the results and the cost

of refreshing the query require a significant invest-

ment of time and effort.

With RavenDB, aggregation queries are the respon-

sibility of the database engine, not your operations

teams� RavenDB will do the aggregation ahead of

time and keep it continuously up to date, so aggre-

gation queries are served in milliseconds instead of

minutes, with no need for operational overhead�

8

How much "new stuff" must you learn
to query each database?

For queries, RavenDB uses RQL (Raven Query

Language), which is the equivalent of SQL in the

context of the RavenDB Document Database� Like

SQL, it is designed to be user-friendly for developers

and non-developers� RQL gives you a human-read-

able, intuitive way to query the database, project

results of complex or simple queries, and work with

documents in RavenDB�

If you have any experience with SQL, you can under-

stand the RQL syntax easily�

Learning to write queries in RQL with knowledge

of SQL is like being a tennis pro and having to learn

racquetball�

MongoDB supports queries using JavaScript and

JSON - based query objects� This is powerful but can

be unfriendly if you aren't a developer familiar with

both MongoDB and JavaScript� Let's use a simple

query to aggregate results from a Zip Code statistical

data collection and get the states with more than 10

million residents and their populations�

Here is how you would need to write your query using

SQL, RavenDB, and MongoDB:

SQL:

SELECT State, SUM(Population) AS TotalPop

FROM ZipCodes

GROUP BY State

HAVING TotalPop >= (10*1000*1000)

RQL (RavenDB Query Language):

FROM ZipCodes

GROUP BY State

WHERE SUM(Population) >= 10_000_000

SELECT SUM(Population) AS TotalPopulation, State

MongoDB Syntax:

db.zipcodes.aggregate([

 { $group: { _id: "$state", totalPop: { $sum: "$pop" } } },

 { $match: { totalPop: { $gte: 10 * 1000 * 1000 } } }

])

Source: https://www.mongodb.com/docs/v6.0/tutorial/aggregation-zip-code-data-set/

9

RavenDB vs MongoDB

https://www.mongodb.com/docs/v6.0/tutorial/aggregation-zip-code-data-set/

With MongoDB, you need to have a DBA review all

queries and ensure that they don't put too much load

on the server. You also need to define indexes ahead

of time and re-validate your configuration on each

deployment of your software�

With RavenDB, all of this is handled automatically

behind the scenes as part of the notion that you

should have as close to a zero - admin unattended

database experience as possible in your application

stack� RavenDB makes it possible for your devs

to forget about your database and focus on your

application�

Leveraging familiarity with SQL, RavenDB queries

are simpler to read and understand, generate the

appropriate set of indexes automatically, and allow

your developers to reach production faster and with

more time to actually invest in your core business

features�

10

Performance
How fast can each database process your data?

How well does each handle Enterprise Level load?

With sustained low latency throughput, RavenDB can

handle all your writes in a transactional manner with

a speed of over 150,000 writes/second per node on

commodity hardware (machines selling for less than

$1,000) and exceed 1 million reads/second� RavenDB

enjoys single-digit millisecond performance right up

until you hit the limits of your hardware�

The RavenDB team keeps improving the database's

performance from version to version, sustaining its

rich and complex functionality along with ACID guar-

antees� RavenDB makes handling Big Data a small

challenge� Using RavenDB on the cloud, whether in

your own cloud, as a service with RavenDB Cloud, or

in a hybrid architecture will save you time, resources,

and money�

The standard performance test for RavenDB is to load

the entire Stack Overflow dataset, which includes

tens of millions of questions totaling over 50 GB of

data� Currently, RavenDB accomplishes this task in

less than five minutes, and our team keeps improv-

ing its performance�

Similar to RavenDB, MongoDB supports CRUD oper-

ations, simple updates, simple indexing, and both

simple and aggregation queries at peak performance

speeds� MongoDB is typically faster for non-con-

current, plain write-oriented tasks with no indexing�

However, there are heavy prices for these shortcuts�

With MongoDB, to achieve the best performance you

need to sacrifice data integrity for speed by avoiding

transactions� No indexing means slow queries, espe-

cially on large datasets� Your users feel slow queries�

On the cloud, your wallet does as well�

MongoDB lags behind RavenDB in performance for

aggregation queries, transaction support, and real

data integrity� Furthermore, there are many opera-

tions that MongoDB does not support: Pre-computed

map-reduce operations, complex patch operations,

and non-trivial indexes and queries� All of these

features make your system as a whole more effi-

cient, agile, and able to provide your users with fast,

complex data management� As the features you need

become more advanced, the performance costs in

MongoDB rise significantly.

How does each database's processing method push

performance to the max?

The RavenDB native format is called Blittable JSON,

a zero-overhead format designed for storing and

processing JSON data� The RavenDB team developed

the Blittable format to enable efficient document

processing� To make this happen, we restructured

how we save things to memory and on disk to

make reading documents dirt cheap� This is one of

the advantages of creating an all-in-one database,

where each component is custom-made to seam-

lessly work in tandem with one another, maximizing

overall performance�

The Blittable format allows RavenDB to avoid dese-

rializing JSON objects when reading them from

persistent storage� This saves lots of memory and

CPU – especially on the cloud� Blittable can process

data without first parsing the entire document into

its object form� This reduces the costs of most oper-

ations in RavenDB significantly.

The Blittable format was designed to take advan-

tage of the way RavenDB's storage engine works to

streamline document processing and significantly

simplify the amount of work RavenDB needs to do�

11

RavenDB vs MongoDB

For example, instead of writing our own caching

subsystems, RavenDB was designed to leverage the

operating system's own page cache and access docu-

ments in such a way as to make optimal usage of the

kernel's behavior� The kernel has more information

about the state of the whole system, which allows

RavenDB to be a better team player and share the

system's resources instead of hogging them all�

MongoDB uses a format called BSON (Binary JSON)

to store documents� Processing BSON is somewhat

easier for a computer than processing JSON textual

data� However, it is still a format that requires

deserializing documents whenever you load them,

increasing memory and CPU usage�

RavenDB's Blittable format means that it can access

the documents directly in the operating system's

page cache; MongoDB uses a separate memory (in

addition to the page cache) and needs to deserialize

the BSON documents whenever it accesses them�

Since its inception in 2009, and up to version 6�0,

RavenDB has been using its own version of Lucene�

net, which was modified to be ACID-compliant�

Lucene is a proven and mature indexing engine, but

in its essence, it is a full-text indexing solution opti-

mized for processing single documents� In version

6�0, RavenDB introduced Corax, a new indexing

engine built from scratch and tailored for batch

processing of documents, which better suits real-

life database usage scenarios� Unlike Lucene, which

computes and holds data structures in memory,

Corax stores them on disk� Consequently, Corax uses

significantly less memory while eliminating long

execution time on cold queries�

Scaling Out Your
Database

How does each database maintain high availability

and distribution of work?

RavenDB recommends setting up clusters of at least

three servers, or nodes, to properly distribute your

system's workload and provide zero downtime

capability when a server goes down� RavenDB has a

multi-master topology, where each server in a data-

base group is always kept fully updated and is thus

able to instantly and seamlessly take over all of the

tasks required if the need arises�

RavenDB makes it easy to set up a cluster of multi-

ple servers to act as nodes for your database group�

Setting up a cluster is as simple as point and click

in the RavenDB studio, and it's even easier with

RavenDB Cloud, the hosted version� The cluster takes

care of all the details of replicating data between

nodes, ensuring sufficient copies of your data are

kept, and dynamic load balancing and failover

between the nodes in the cluster� No special network

configuration or intricate load-balancing setup is

required�

If one node fails, other nodes will continue to operate,

and your users will have continuous access to your

database with zero downtime! Once the faulted node

is up again, one of the other nodes will replicate the

most current state of data to it, keeping your infor-

mation highly available with multiple copies�

When running in a cluster, RavenDB uses the

multi-master model� When you make a write to any

node in the cluster, that write will be accepted and

then replicated to the rest of the cluster� RavenDB's

multi-master model handles failure more gracefully

because each node writes independently of the rest of

12

the cluster, and there is no period of unavailability if

the cluster leader fails�

RavenDB features a built-in monitoring dashboard

that highlights nodes that have gone down and

provides insights into the root cause of the prob-

lem, enabling you to perform maintenance on your

system faster and more efficiently� Assignment

failover ensures that all outstanding tasks assigned

to a downed node are evenly redistributed among the

operational nodes in your cluster�

RavenDB supports Sharding your data across multi-

ple nodes� Documents in a sharded database are

stored in buckets, and each server is assigned a range

of buckets� When storing documents, the cluster will

execute a hash algorithm over the document ID, and

based on the computed hash, it will automatically

determine the bucket for a document� Replication is

applied to sharded databases, so each shard will be

replicated across multiple servers, ensuring auto-

matic seamless failover with zero downtime�

RavenDB Sharding is completely server-bound, and

when working with such a database, your expe-

rience will be identical to a non-sharded one� All

implementation details, such as buckets, are hidden,

allowing you to interact with documents just as

you would in a non-sharded database� The cluster

features an Orchestrator, serving as the first point of

contact for your clients� The Orchestrator manages

all complexities of coordination and execution, so

from the perspective of your application, the data-

base still appears to be one whole and seamless, even

when it's broken up into multiple servers�

During the lifetime of your database, an even distri-

bution of data and workload between all shards

maintains a steadier overall usage of resources like

disk space, memory, and bandwidth, improves avail-

ability, and eases database management� RavenDB

provides users a resharding option - moving one

bucket or range of buckets from one shard to another�

In other databases, users are typically forced to select

a Partition Key upon database creation� The Partition

Key consists of one or more fields and determines

the shard where the document will be located� Once

selected, it cannot be changed on the fly, which

introduces significant risks as the database grows

and your application adapts to requirements changes�

By default, RavenDB uses a document identifier as

a Partition Key, but users also have the option to

customize the partitioning strategy by "anchoring"

similar documents together� Let's look at documents

with the following IDs:

customers/5 - customer

orders/1$customers/5 - order for customer

shipments/1$customers/5 - shipment for

customer

RavenDB identifier is a string that can contain a

dollar character� In a sharded database, the hash-

ing function will consume only the part after the $

sign� As a result, all three documents will have the

same hash code and end up in the same bucket� This

anchoring approach is beneficial when executing

queries, indexing, or fetching related documents,

as it keeps them together and eases the load on the

database�

MongoDB uses the primary-secondary replication

process, where data is initially written to a single

node, which then propagates the data to other nodes

in the cluster� This can create a single choke point

in the data architecture, and a primary node failure

can stall the entire system while a different node is

selected as the new primary�

To replicate, MongoDB uses the OpLog� This log

captures the operations required for secondary nodes

to execute, ensuring the replication of data to the

13

RavenDB vs MongoDB

master state� If a failure occurs and there are enough

writes to fill the OpLog, this can put your cluster into

a permanently bad state and require admin interven-

tion to recover�

MongoDB also offers sharding, but configuring,

managing, and maintaining a sharded cluster is more

complex than a standalone server or even a replica

set� The process involves setting up multiple servers,

mongos routers, and config servers. Choosing the

right shard key is critical and can be tricky� A poor

choice can lead to unbalanced data distribution

(some shards having much more data than others),

creating "hotspots"� Once you've chosen a shard-key

for a collection, you can only change it with a signifi-

cant effort to dump, drop, and reload the data.

Features
How many third-party applications and plugins will

you have to install along with each database?

RavenDB is a synergy of tailored components devel-

oped in-house to serve all your data needs in one

place� It aims to minimize cost and complexity by

providing a feature-rich database that covers all

common scenarios directly� If you have a solution

using various third-party components, you might

need to go to several places for help, often hearing

the support engineers say, "This is not our problem�

Talk to the people who developed that�"

Features you would usually have to plug in from

somewhere else, like fast aggregation, ETL and

Hub/Sink replication, full-text search, time-series,

revisions, messaging or event sourcing, memory

management, and more, are already part of RavenDB�

The RavenDB API includes server and client-side

caching, adheres to best practices by default, and

incorporates design patterns like Identity Map and

Unit of Work� RavenDB packages everything in a

well-defined and easy-to-use location, with all

operations available both as scriptable commands

and as part of a tailor-made GUI�

This is great for smaller businesses with limited

development resources and time for IT� RavenDB's

comprehensive solution ensures adherence to best

practices and maintains a consistent and verifiable

approach, making it well-suited for larger organiza-

tions� This is ideal for the cloud, where every add on

can cost you money for every moment you use it�

MongoDB is more like a do-it-yourself solution�

You'll need to purchase or find a MongoDB Admin

GUI and get a BSON utility library to deal with

everything BSON� About a dozen tools are provided

with just the MongoDB installation alone� There are

several dozen components for things like shell or

backup and restore tooling� The number of tools you

are required to compose to perform certain opera-

tions with MongoDB can be overwhelming, making

it challenging to figure out the best approach to use

in a given situation and identify available resources

for specific tasks.

As a simple example, full-text search is typically

handled by integrating MongoDB and Elastic

together� That works, but at more than double the

operational overhead and cost� In contrast, RavenDB

offers complete full-text search capabilities out of

the box, which means that you don't need to have a

separate product to purchase, integrate, and monitor�

14

Integration With Your
Organization's Current
Systems

How well does each non-relational database work

with SQL relational databases and the cloud to

support hybrid data architectures?

There are many use cases where organizations based

on a relational database chose RavenDB because

it offers hyper-fast complex queries and is easier

to integrate with their existing system� RavenDB's

query language, RQL, is intentionally very similar to

SQL� This makes it easy to learn, but they can also

use the same logic that their system is built on with

minimal translation� This saves a lot of development

work, debugging, and maintenance�

RavenDB also has an SQL migration wizard that takes

your relational data and creates a basic document

template to collect it� It's a starting point to take in

data from your relational database and enable you

to model it in a non-relational form� Although it's

usually unnecessary, documents can reference each

other, and related documents can be called into the

same session in only one trip to the server�

RavenDB supports automatic ETL (extract, trans-

form, load) processes to relational and non-rela-

tional databases and databases on all cloud platforms�

You don't need an outside application; its a core

part of RavenDB� You can replicate the documents

from your Non-Relational RavenDB Database to

a relational SQL database� This empowers you to

perform various analyses and reports on your data in

a familiar environment using your existing reporting

toolset�

A typical deployment pattern introduces RavenDB

as a write-behind cache to a relational database�

Another common deployment is to use RavenDB as

part of a polyglot microservices architecture�

MongoDB has "connectors" that support pulling

data from a relational database� The MongoDB BI

connector translates SQL queries into MongoDB

queries and returns them to its BI systems� MongoDB

does not have a native "push" oriented service that

continuously transfers data to a relational database

for OLAP and reporting purposes� While external ETL

services are available, it is important to note that

external plugins can be buggy and prone to issues,

especially after version updates�

MongoDB released its "Relational Migrator" in 2022,

which imports data from tables, transforming them

into a document model�

MongoDB's query language differs significantly

from SQL, meaning integration will likely require a

substantial amount of translation and re-coding�

Thanks to its commitment to smooth integration

with relational systems for many years, RavenDB

offers an import from SQL to documents, an ETL

process to SQL, and a SQL-like query language called

RQL� Altogether, these features make integrating

with a relational database simple, efficient, and

smooth�

How does each integrate with other top data services

in a complex system?

OLAP

RavenDB has a native OLAP ETL, an ongoing task

that automatically pushes changes in data to OLAP

15

RavenDB vs MongoDB

databases and data lakes for additional business

intelligence functionality�

MongoDB has a native connector for BI, which acts

as a MySQL server for MongoDB data� MongoDB

Connectors do not include the option of adding

transform scripts in the process (the T in RavenDB's

ETL)�

Kafka / RabbitMQ

RavenDB provides bi-directional support for

integration with Kafka & RabbitMQ� You can

have RavenDB pull events from sinks and queues,

transform them into documents, or publish

events and messages from documents inside of

the database. You need to define the policy on how

that is done, and then RavenDB takes over the

entire process, ensuring high availability, ongoing

monitoring, and your peace of mind�

MongoDB also has connectors to Kafka and

RabbitMQ� Again, you cannot include transform

scripts, and a significant amount of integration time

and effort to set up properly is required.

PowerBI

RavenDB has native PowerBI integration� You

can export raw data from RavenDB collections

to PowerBI� RQL queries can be executed directly

in PowerBI to retrieve only selected data from

RavenDB, which means PowerBI users can take

advantage of the complete set of query capabilities

offered by RavenDB, such as automatic indexing and

aggregation queries� �

On top of that you can then apply the PowerBI

features to slice and dice your data and create mean-

ingful reports from the data directly�

MongoDB's BI connector tool can export data to

PowerBI but does not support query execution�

Elasticsearch

MongoDB offers full-text search capabilities only as

part of MongoDB Atlas, their cloud offering.

Typical MongoDB deployments that necessitate full-

text search often integrate with Elasticsearch�

The MongoDB connector to Elasticsearch can copy

documents from MongoDB to Elasticsearch but will

only send the full document contents, not just the

details you care to enable search on�

RavenDB, on the other hand, provides full-text

search capabilities directly out of the box, requiring

no additional integration� If you are already using

Elasticsearch and want to expose data from RavenDB

to your existing search cluster, you can use the

Elasticsearch ETL inside of RavenDB to replicate data

to Elasticsearch�

In addition to specifying which collections will be

sent, you have the flexibility to send just the relevant

data to the search or even push aggregated informa-

tion to the other side to reduce overall costs�

Caching and
Concurrency

How does each database cache its data?

RavenDB incorporates both automatic and aggressive

caching� RavenDB clients can cache data locally and

let the server know that they have a cached version

of the query they are making� An optimized code path

16

inside RavenDB then checks whenever there have

been any modifications to the query. If there haven't

been, the client will use the cached version�

This allows RavenDB to save a lot of bandwidth and

cost since many queries stay mostly the same and

can be served completely from the client cache while

ensuring you always serve fresh information to the

users� This saves you massive amounts of latency,

especially on the cloud. Specifically on the cloud, this

also reduces the data transfer costs in a measurable

manner�

RavenDB also supports aggressive caching� Instead

of the client asking the server if something has

changed for every query, the client will ask the server

to inform it only when there are any modifications

on the server side. Until the client gets such a notifi-

cation, it can serve results purely from its own cache,

thus vastly reducing trips to the server� RavenDB

doesn't just save you the query cost and the band-

width transfer but eliminates the network round trip

costs as well� Automatic and aggressive caching are

also parts of the RavenDB Cloud (DBaaS) Managed

Service�

MongoDB doesn't have comparable features to

client-integrated caching or aggressive caching�

External workarounds can be done to create a client-

side cache with MongoDB� Doing so will improve

your query speed, and assuming that the cache is

successfully kept fresh, it is practical� Still, transfer-

ring data to various services and maintaining these

integrations slow down DevOps and server/client

performance�

How does each database handle concurrency?

RavenDB's in-house storage engine, Voron, was built

explicitly to increase performance as concurrency

grows� It uses an MVCC architecture to ensure that

writers do not block readers and vice versa� With

concurrent writes, RavenDB can merge multiple

concurrent operations into a single disk operation,

significantly reducing I/O costs and improving

performance by large margins� RavenDB has been

ACID by default from its inception� Data integrity is

and has always been a key value in RavenDB�

For reads, RavenDB scales up directly to the number

of nodes available to the system, as there is no need

for locks or other concurrency controls to waste

cycles on�

MongoDB uses multi-granularity locking� Locks

are handled at multiple levels (server, database,

collection, and document) and must be managed by

MongoDB to ensure proper behavior� Lock manage-

ment is typically expensive in databases, with locking

& latching taking over 30% of the overall cost� The

number of locks and their management can take up

significant time when dealing with production scale

load�

Data Security
How does each database protect your data?

How certain can you be that nobody will hack

into your private information or destroy your

reputation?

RavenDB can natively encrypt information in transit

and at rest in your database� To safely guard your

data on disk, RavenDB uses the XChaCha20, with

256-bit encryption. RavenDB uses X.509 certificates

for authenticating access to your data and TLS 1�2 or

higher for encrypting all communication between

clients and servers�

17

RavenDB vs MongoDB

Industry-standard security takes minutes to set

up in an on-premises cluster and is a built-in and

required feature on RavenDB Cloud� Still, you can

start coding an application and run it in development

without security, listening only on the local loopback

device� As long as the database is used inside the local

machine, you can usually ignore all security concerns

(accepting no outside connections) and require no

authentication�

If you set your database to listen to connections

outside your local machine but didn't set up secu-

rity properly, RavenDB will immediately block the

vulnerable configuration and require the admin-

istrator to properly set up the security and access

control to prevent unauthorized access to the data�

RavenDB will only let you expose your data outside

your local machine once you adequately provide

security� RavenDB also makes it easy to set itself up

securely� You don't have to jump through hoops or go

through reams of documentation� A friendly wizard

will take you through the process of setting up a

secure RavenDB cluster according to our best prac-

tices� That, combined with proactively preventing

vulnerable configurations, ensures your data isn't

left unsecured and exposed on the public Internet�

To set up MongoDB securely is a complex process�

Evidence suggests that there are steps that are

routinely skipped� Over 100,000 MongoDB databases

have been compromised in recent years! There have

been multiple high-profile instances of MongoDB

databases being hijacked, where hackers wiped out

client data and held businesses hostage by demand-

ing payment to restore their databases�

Unlike RavenDB, MongoDB is not safe by default�

To enable developers to download their database

and start coding quickly, the configuration consid-

ers every database user an administrator� This is

effective in allowing developers to focus on building

their applications� However, once the application

goes beyond one local machine and remote users

can connect to the database, it is easy to miss a step

and forget to lock the door� The outcome of this

complexity has been lost records, critical data held

for ransom, and leakage of sensitive user informa-

tion from many organizations�

Data breaches typically cost millions of dollars to

repair and are a blow to users' trust in an organiza-

tion� Is data security something you'd rather believe

that no human will make a mistake, or would you

prefer a data platform designed and proven safe by

default?

18

Getting Started
What do you get in the free version of each product?

RavenDB gives you a free cloud instance or an

on-prem license suitable for low-throughput

scenarios� Obtaining a free cloud instance is quick

and straightforward, allowing you to start using

RavenDB within minutes� RavenDB will handle all

the back-end operations and enable you to focus

exclusively on how your data works to enhance your

application� To get started, claim your free instance

at: https://cloud.ravendb.net/

A free on-prem license includes 3 cores, 3 nodes, and

6 gigabytes of RAM memory for your data� Your free

license also comes with the RavenDB Studio, provid-

ing you with a GUI that makes RavenDB easy to use�

RavenDB has a simple on-premises cluster setup

wizard that can get you started in minutes� You can

take a free license at: https://ravendb.net/free�

RavenDB bears most of the financial burden for on

boarding and tech support� Also, the tech support

team is staffed by the same engineers who built

RavenDB� This is done on purpose to ensure that

RavenDB remains as intuitive and trouble-free as

possible�

While MongoDB allows you to set up a cluster in

their free version, accessing critical features neces-

sitates the purchase of premium packages� Many of

their installation, configuration, and maintenance

processes are complex, requiring tech support�

Mentioned by both Gartner and Forrester Research,

RavenDB is a pioneer in NoSQL database technol-

ogy with over 2 million downloads and thousands

of customers from startups to Fortune 100 Large

Enterprises� Over 1,000 businesses use RavenDB

for IoT, Big Data, Microservices Architecture, fast

performance, a distributed data network, and every-

thing needed to support a modern application stack

for today's user� For more information, please visit

ravendb.net or contact info@ravendb.net�

19

RavenDB vs MongoDB

https://cloud.ravendb.net/
https://ravendb.net/free
https://ravendb.net/
mailto:info%40ravendb.net?subject=

About RavenDB
RavenDB is a pioneer in NoSQL database technology with over 2 million downloads and thousands of customers

from startups to Fortune 100 Large Enterprises.

Mentioned in both Gartner and Forrester research, over 1,000 businesses use RavenDB for IoT, Big Data,

Microservices Architecture, fast performance, a distributed data network, and everything you need to support a

modern application stack for today's user�

For more information please visit

ravendb.net

Contact us at

info@ravendb.net

Documentation

https://ravendb.net/learn/docs-guide

Use Cases

https://ravendb.net/news/use-cases

Free Online Training

https://ravendb.net/learn/bootcamp

Webinars

https://ravendb.net/learn/webinars

RavenDB Download

https://ravendb.net/download

RavenDB Cloud Database as a Service

https://cloud.ravendb.net/

20

http://ravendb.net
mailto:mailto:info%40ravendb.net?subject=
https://ravendb.net/learn/docs-guide
https://ravendb.net/news/use-cases
https://ravendb.net/learn/bootcamp
https://ravendb.net/learn/webinars
https://ravendb.net/download

	Introduction to RavenDB and MongoDB
	Maintaining Data Integrity
	Querying & Aggregating Data
	Performance
	Scaling Out Your Database
	Features
	Integration With Your Organization's Current Systems
	Caching and Concurrency
	Data Security
	Getting Started

	About RavenDB

